

MICROGRID ASC PRESENTATION

Purpose

Introduction to DEIF ASC

Content

Introduction

ASC Solar

ASC Battery

Monitoring

Utility SW

HW layout

Microgrid definition

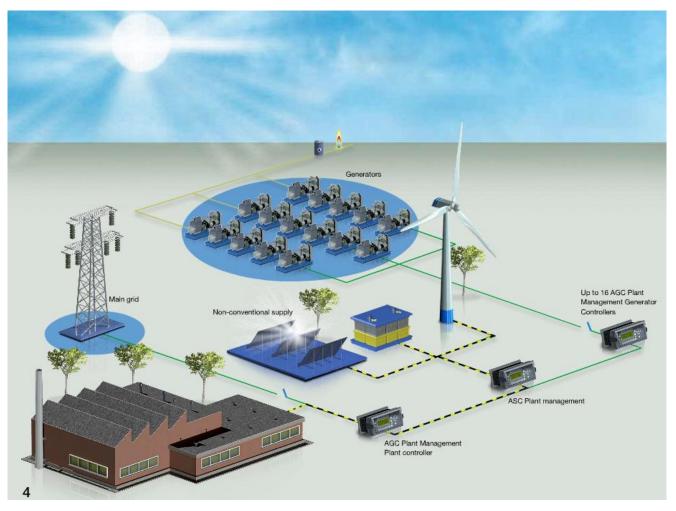
Micro-grid

When local load and power generation can be disconected from the Micro-grid and word independently.

Hybrid

Combination of different technologies to produce power.

Segments


Grid-tied / Emergency power:

Factories, farms, hospitals, etc.

Self comsumption.

Off-grid:

Factories, farms, mines, vilages, etc.

AGC

Island

Only gensets and Renewables are connected to bus providing power to the consumer.

Automatic Mains Failure

The hybrid is started automatically in case of mains failing providing power to the consumer.

When the utility recovers, the system reverts to main supply.

This can be done as a closed transition or as an open transition.

Mains Power Export/Zero export

The utility is connected to the bus providing power to the consumer.

On demand the hybrid can be started producing according to a user configurable power and reactive power reference this is in relation to the mains connection point.

The system will thereby secure a fixed power flow to the mains independent of consumer fluctuations.

Peak shaving

The utility is connected to the bus providing power to the consumer.

According to user defined settings the hybrid will start automatically when the mains consumption exceeds selected threshold and take the remaining power from the hybrid.

Load Take Over

The utility is connected to the bus providing power to the consumer. On demand the hybrid can be started.

The system will then do a transition where the consumer is moved and disconnected from mains supply to run purely on hybrid supply

Afterwards system reverts to main supply. This can be done as a closed transition or as an open transition.

ASC

+ -ASC Battery

Presentation

Purpose

Introduction to DEIF ASC Solar.

Content

Main features

Genset/Utility interaction

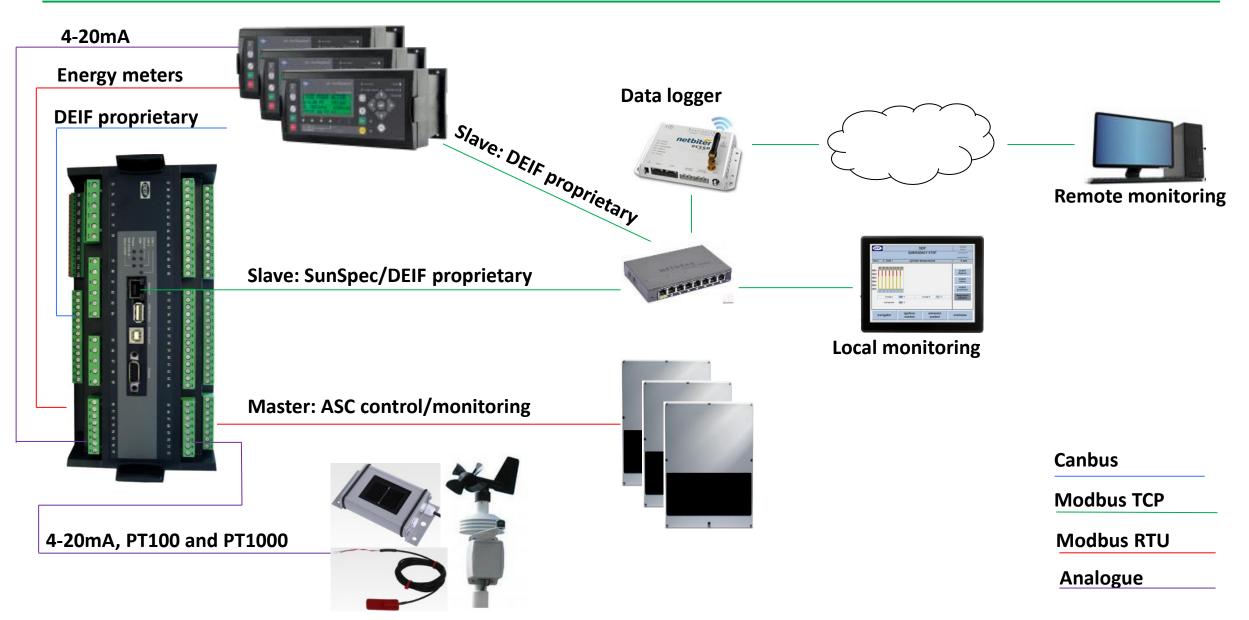
Inverter interaction

Meteorological interation

ASC-4 Solar, Maximizing PV penetration.

Minimum genset load

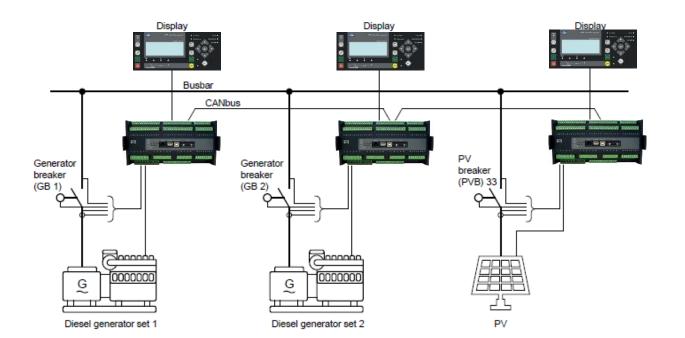
The minimum genset load set point is available in the ASC-4. the purpose is to eliminate the risk of reverse power and engine probelms caused by the low load. It applies in *Island mode* only. The sustainable sources will be curtailed if the load set point is compromised.

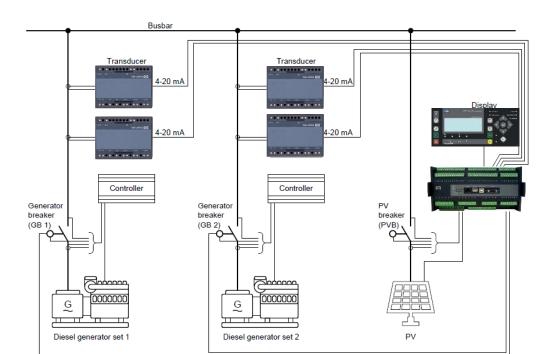

Spinning reserve demand

Spinning reserve is available as a percentage of present production, spinning reserve by forecast systems or by ESS systems.

Zero export applications

Maintaining zero export at grid connection, preventing any power exported to the grid. The mode can also be used for power export to grid.


ASC Solar Genset / Utility Interaction



- Integrated solution.
- Applicable with AGC PM controls.
- Applications up to 16 ASC-4
- Minimum genset load.
- Spinning reserve.
- Maximize PV penetration.

- Add-on solution.
- Applicable with all genset controls.
- Maximum 1 ASC-4
- Minimum genset load.
- Maximize PV penetration.

Power reference in off-grid operation

Settings for determining minimum DG load in percentage are available. They apply for both Stand-alone and Power management applications.

- Menu 8011 "Minimum DG load 1"
- Menu 8012 "Minimum DG load 2"
- Menu 8013 "Minimum DG load selector"

-Min DG load 01 Description: Setpoint:	Minimum DG load percentage in island operation 1
Min DG load 02 Description: Setpoint:	Minimum DG load percentage in island operation 2
-Min DG load set Description: Setpoint:	Minimum DG load percentage island selection Min. DG load set 1

This is for securing a certain amount of load on the gensets eliminating the risk of reverse power situations and impure combustion and exhaust problems.

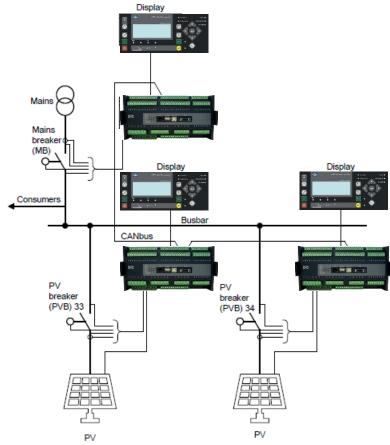
Without compromising minimum DG load constrain the ASC will maximize the power reference to the PV Plant The ASC might decrease (or even completely remove) the power request to the PV Plant even though more PV power is available.

The power ramp is skipped when the PV plant carries the entire load or the DG's are overloaded.

Reactive power reference in off-grid operation

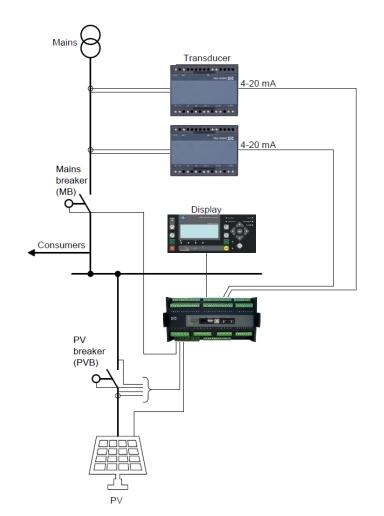
The reactive power reference can be applied in different manners. The type to use and what reference is determined by following settings:

- Menu7031 "DG cosphi limit I"
- Menu7031 "DG cosphi limit C"
- Menu7033 "Q type off-grid"


The "Q type off-grid" can be set to the following selections:

DG cosphi lim l												
Description:	Maximum genset cosphi inductive in off-grid operation											
Setpoint:	0,8 (0,11)											
DG cosphi lim C												
Description:	Maximum genset cosphi capacitive in off-grid operation											
Setpoint:	1 (0,11)											
Q type off-grid												
Description:	Q reference type in off-grid operation											
Setpoint:	Off											

Selections	Functionality
OFF	Okvar used for reference.
Q share	ASC will have PV sharing the reactive power with the genset(s) in order
	to keep same cosphi on genset(s) and PV.


If the genset(s) are driven out of the cosphi operating window dictated by the settings in menu7031 and menu7032 the ASC will use the excessive Q load as reference for the PV-plant.

- Integrated solution.
- Applicable with AGC PM controls.
- Applications up to 16 ASC-4.

Grid-tied

- Add-on solution.
- Maximum 1 ASC-4.

Power reference in grid-tied operation

The active power reference is determined by the mode selected and the associated power reference setting and scaling:

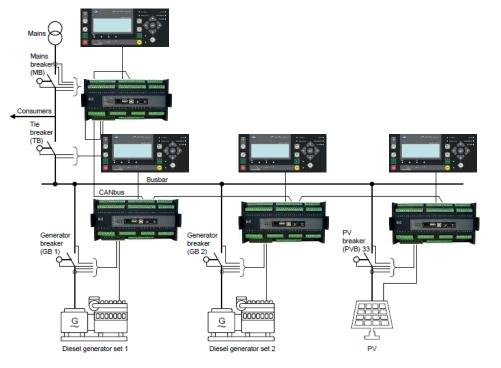
Selections	Functionality
Fixed power mode	Menu 7001 "Fixed Power reference" Menu 7002 "Scale"
Mains power export mode	Menu 7011 "Mains power export reference" Menu 7013 "Scale"
Peak shaving mode	Menu 7012 "peak shaving reference" Menu 7013 "Scale"

Mains Power Ex	p		
Description:	Mains Power Export reference		
Setpoint:	1000 kW (-20000 20000)	Fixed Power	
Peak Shaving		Description:	Fixed power set point
Description:	Peak Shaving reference	Setpoint:	500 kW (0 2000)
Setpoint:	750 kW (-20000 20000)	FP scale	
MPE/PS scale		Description:	Scaling of the FP reference
Description:	Scaling of the PS/MPE reference	Setpoint:	1kW:1kW
Setpoint:	1kW:1kW		

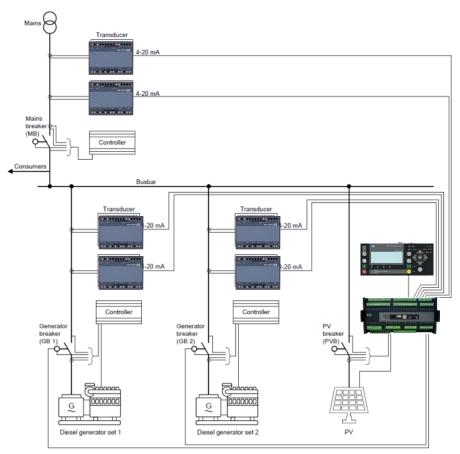
Reactive power reference in grid-tied operation

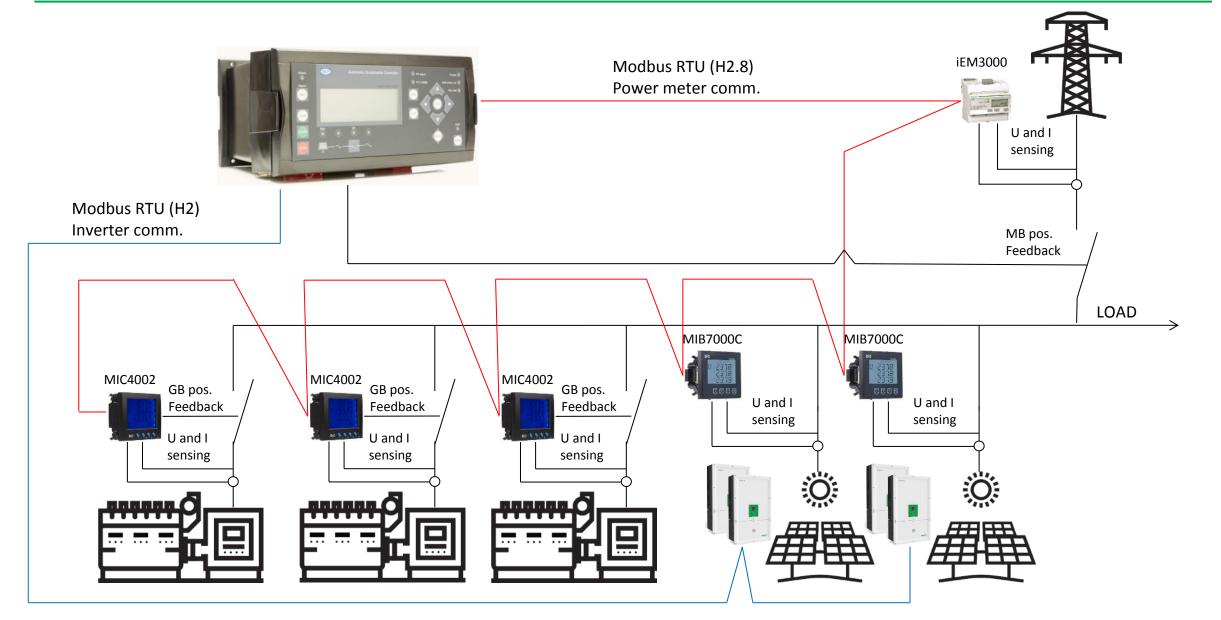
The reactive power reference can be applied in various different manners. The type to use and what reference is determined by following settings:

- Menu7021 "Cosphi reference"
- Menu7022 "inductive/Capacitive"
- Menu7023 "Q reference"
- Menu7024 "Q type grid-tied"


The "Q type grid-tied" can be set to the following selections:

Cosphi	ref								
De	scription:	Fixed cosphi set poin	t						
Se	tpoint:		0	0,9	*	(0,6 1)) 🎦	2	
Cosphi	ref								
De	scription:	Inductive or capacitive	cosphi r	egulation					
Se	tpoint:	Inductive	•) 🛃	26	
Q ref									
De	scription:	Fixed reactive power :	set point						
Se	tpoint:	2		500	1	kvar (-20000 2000	1	7 6	-
								~ 0	
Q ref ty	pe								
De	scription:	Set origin of Cosphi re	eference						
Se	tpoint:	Q fooed	•				•	/	
Q ref lin	nit								
De	scription:	Determines the way t	o limit co	sphi reference	9				
Se	tpoint:	OFF	•) 🏷	2	
Q ref lin	nit								
De	scription:	How close to go agair	nst opaba	bility curve as	a part	of limiting cosphi ref	erence	scher	me
Se	tpoint:		Э	95	*	% (20 100)	ا 🎦	2 6	

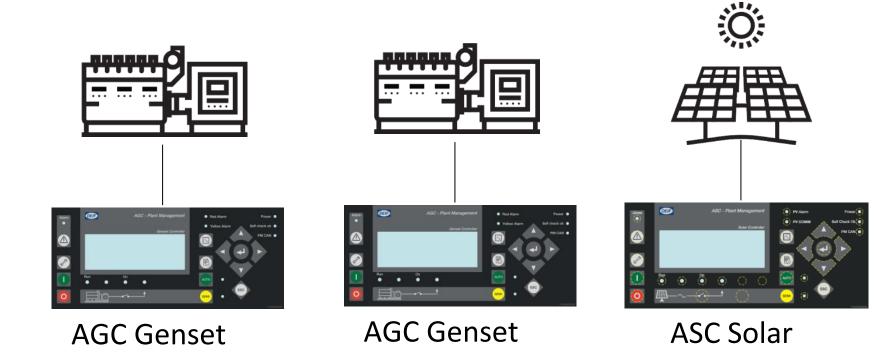

Selections	Functionality
OFF	Okvar used for reference.
Cosphi fixed	ASC will have PV producing according to menu7021 and menu7022. In case Cosphi control via control registers (communication) is enabled the ASC will take the references from there instead. In case Cosphi control via external input (analogue input) is enabled the ASC will take the references from there instead.
Cosphi import/export	ASC will have PV producing in order to have power imported/exported to utility at cosphi according to menu7021 and menu7022.
Cosphi superior	ASC will have PV producing according to cosphi reference received from Mains controller. If Mains controller is not setup up to distribute cosphi references the ASC will have PV producing as if "Cosphi fixed" was selected.
Q fixed	ASC will have PV producing according to menu7023. In case Q control via control registers (communication) is enabled the ASC will take the references from there instead. In case Q control via external input (analogue input) is enabled the ASC will take the references from there instead.
Q import/export	ASC will have PV producing in order to have reactive power imported from utility according to menu7023.


Combination

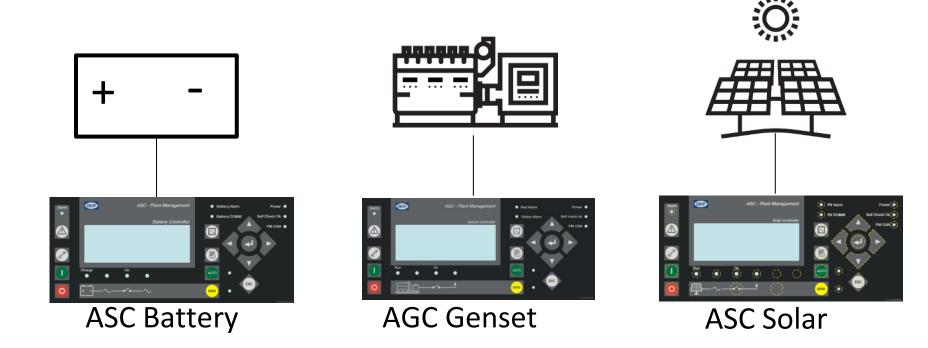
- Integrated solution.
- Applicable with AGC PM controls.
- Applications up to 16 ASC-4.
- Minimum genset load.
- Spinning reserve.
- Maximize PV penetration in all operation modes.

- Add-on solution.
- Applicable with all genset controls.
- Maximum 1 ASC-4.
- Minimum genset load.

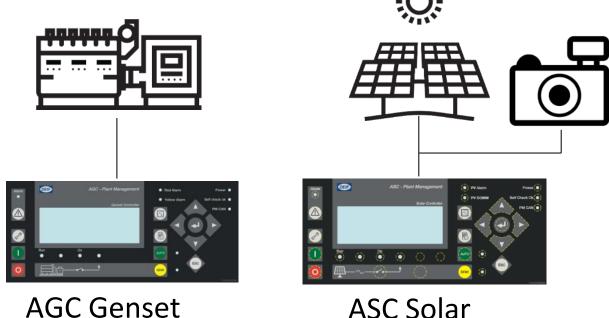
Meters currently supported


Meter	Р	Q	Inputs	Meter	Ρ	Q	Inputs
MIB7000C	Yes	Yes	No	Multis L40	Yes	Yes	No
	X	Ň		PM5560	Yes	Yes	No
MIC4002	Yes	Yes	2	Diris A40	Yes	Yes	No
MIC4224	Yes	Yes	4	EDS MMCT3	Yes	Yes	No
MIC-2	Yes	Yes	No	Mavolog Pro	Yes	Yes	No
MTR-3	Yes	Yes	No				
iEM3000	Yes	No	No	EDMI Genius	Yes	Yes	No
EM6400	Yes	Yes	No				

Spinning reserve (Genset)


One way of obtaining spinning reserve is by having excessive amount of genset(s) on line being able to pick up the additional loading in case PV drops its share.

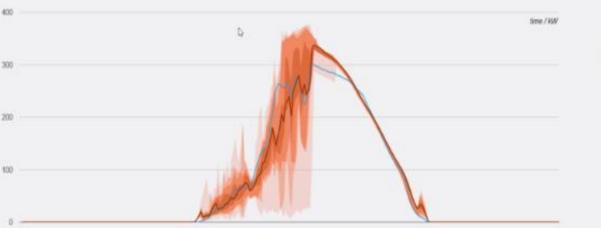
Traditional gensets have a minimum operating load at 30-40%. Running with excessive amount of genset(s) will impact on the PV penetration as the PV have to be curtailed in order to maintain minimum loading of the excessive genset(s) as well.


Spinning reserve (Battery)

Another way of obtaining spinning reserve is by means of energy storage systems, typically battery based. The storage system will then pick up the load dropped by the PV source providing the system sufficient time to start additional genset(s) necessary to cope with the increased loading. This will result in higher PV penetration. However storage systems are still considered somewhat expensive.

Spinning reserve (Forecast)

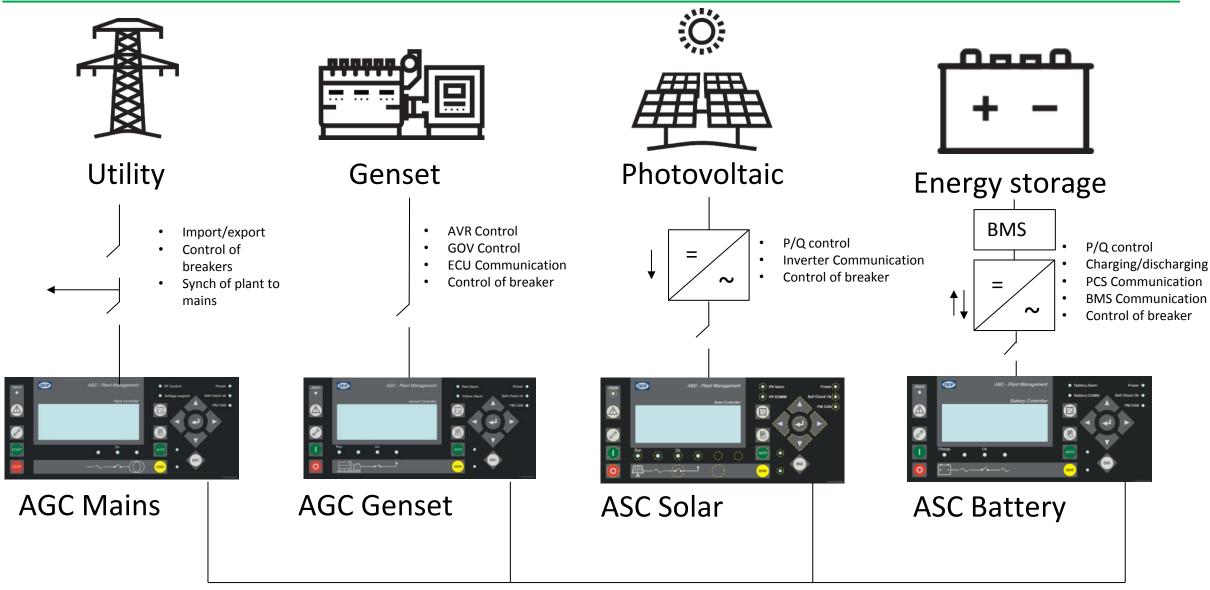
Finally and alternative solution exists. Short term forecasting of solar irradiation can predict the irradiation. Using sky image cameras the irradiation for the coming hour can be provided to the PV/diesel control system in one minute intervals. Based on this information genset(s) can be started in due time before the PV panels are shaded and the PV production drops. At the same time excessive genset(s) can be kept running in case forecasts shows that a new drop will come shortly thereby preventing unrequested start/stop cycles of the genset(s).


SUN OR SHADE?

SKY IMAGER ENABLES ADVANCED SOLAR PENETRATION TO YOUR MICROGRID APPLICATION

PENETRATION TO YOUR MICROGRID APPLICATION — *Reuniwalt* — In PV/diesel hybrid applications, the intermittency of the PV source poses a stability challenge for the system when the installed PV capacity reaches a significant size.

DEIF's ASC solutions are compatible with the leading short-term forecasting systems of the industry. The forecasting is directly coupled to the existing spinning reserve routine and will generate automated start/stop of genset(s) accordingly.


Produced	power = Pactual
Percentiles	
🗹 [Un/set all]	
P10=P10	= 770 P90 🕅
P20 = P20	■ P80 P80 🗹
🗹 P30 = P30	• P70 P70 ☑
2 P40 - P40	. P60 P60 ₪
Ø P50	

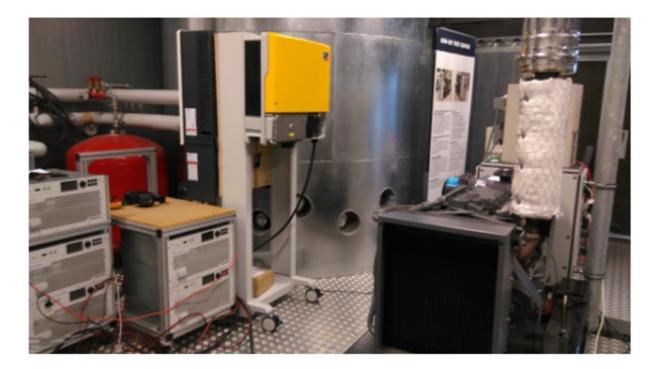
Energy Management System

Supported interfaces

Universal interface

The ASC communicates using the industry standard from SunSpec Alliance.

So what is SunSpec? It is a standardized Modbus communication protocol that includes information such as P and Q set points.


SunSpec Alliance is an association of manufacturers from the photovoltaic industry. The members support the goal of standardizing data and channels of communication for photovoltaic systems, regardless of the manufacturer.

Interface validation at DEIF facility

- -Five 10kW Regarton DC sources available to feed the inverters
- -Possible to parallel PV both with utility and with gensets

Interface validation at inverter maker facility

RRCR support (input)

The input RRCR reference allows for a superior system via RRCR output signals to control the references applied from the ASC to the PV inverter/plant. The RRCR configuration window for input references is shown below.

] 🚥 z 🐳 🎕 🧶 🖉 z 🐸 🖬 🖏 z 🖆 🎿 🔛 😂 🗸 🔛 🖉 📌 🗗 🖉 🏹 📰 🖓 🌆 🌆 🌆 🌆 🕼 🧐 🍪 🍼	6	1
---	---	---

RCR Input re		RRCR	Output refe	rence							
I4	13	I2	I1	P [%]	P Select		Q [%]	Cosphi	Excitation	Q Select	
0	\bigcirc	\bigcirc	\bigcirc	0	P	•	0	0,99	Capacitive 💌	Q	•
0	\bigcirc	\bigcirc	0	10	P	•	0	0,98	Inductive 💌	Off	•
\bigcirc	\bigcirc	0	\bigcirc	20	P	•	0	1,00	Capacitive 💌	Off	•
\bigcirc	\bigcirc	0	0	30	Off	•	0	1,00	Inductive 🔻	Cosphi	•
\bigcirc	۵	\bigcirc	\bigcirc	40	P	•	0	0,90	Capacitive 💌	Off	•
\odot	0	\bigcirc	۲	50	Off	•	0	1,00	Inductive 💌	Off	•
\bigcirc	0	۲	\bigcirc	55	P	•	0	1,00	Capacitive 💌	Off	•
۲	0	۲	0	60	Off	•	0	1,00	Inductive 💌	Off	•
۵	\bigcirc	\bigcirc	\bigcirc	65	P	•	0	1,00	Capacitive 💌	Off	•
۲	\bigcirc	\bigcirc	0	70	Off	•	0	0,43	Inductive 💌	Off	•
۵	\bigcirc	0	\bigcirc	75	P	•	0	1,00	Capacitive 💌	Off	•
۲	0	0	0	80	Off	•	0	1,00	Inductive 🔻	Off	•
۲	0	\bigcirc	\bigcirc	85	P	•	0	1,00	Capacitive 💌	Off	•
0	۵	\bigcirc	0	90	Off	•	0	1,00	Inductive 💌	Off	•
۲	0	0	\bigcirc	95	P	•	0	1,00	Capacitive 💌	Off	•
0	0	0	0	100	Off	-	0	0,13	Inductive 💌	Off	-

-00

RRCR support (output)

The output RRCR reference enables the ASC to apply commands to a PV inverter/plant via RRCR interface. The RRCR configuration window for output references is shown below.

Ŧ	ŝ	8	₽ -	2	Ę	1	•	ñ	6	6	٥,		0	2	P	t p	2	Ç :	-	17	2	Q	Σ	D)	-		ī	6	٩	6	Ì
						G	🕑 RF	CR																			×					
									3	<u>م</u> الأ	•															_						
						_						ut referen	ice																			
								R4	R3	R2	R1		P [%]		P	Select																
								\bigcirc	\bigcirc	0	0		0			P	•															
								\bigcirc	\bigcirc	\bigcirc	0		10			Р	•															
								\bigcirc	\bigcirc	0	0		20			Off	•															
								\bigcirc	\bigcirc	0	0		30			P	•															
								\bigcirc	0	0	0		40			Off	•															
								\bigcirc	0	0	0		50			Р	•															
								\bigcirc	0	0	0		55			Off	•															
								\bigcirc	۵	0	0		60			Р	•															
								0	\bigcirc	0	0		65			Off	•															
								0	\bigcirc	0	0		70			Р	•															
								۲	\bigcirc	0	0		75			Off	•															
								۲	\bigcirc	0	0		80			P	•															
								۲	۵	0	0		85			Off	•															
								0	۵	0	0		90			P	•															
								0	۵	0	0		95			Off	•															
								0	0	0	0		100			Р	•															

Analogue outputs

Analogue outputs	
P reference	
Q reference	
Cosphi reference	

Meteorological Interaction

Weather data

The ASC provides support of sensors for the below listed weather data:

- 3 Plane of array irradiation sensors
- 3 Back of module temperature sensors
- 1 Global horizontal irradiation sensor
- 1 Ambient temperature sensor
- 1 Relative humidity sensor
- 1 Barometric pressure sensor
- 1 Wind speed sensor
- 1 Wind direction sensor
- 1 Rain fall sensor
- 1 Snow depth sensor

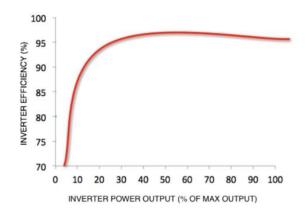
			View	11	
ine	1:	POA	irr.	1	OW/m2
ine	2:	POA	irr.	2	OW/m2
ne	з:	POA	irr.	3	OW/m2
ine	3:	POA	irr.	з	OW/m2

View 12 Line 1: BOM Temp. 1 00	
Line 1: BOM Temp. 1 00	
Line 2: BOM Temp. 2 00	
Line 3: BOM Temp. 3 00	

		View	18		
Line	1:	GH irr.		OW/m2	
Line	2:	Ambient	temp.	0C	
Line	3:	Relative	humidi	ty 0%	

View 19			
Line	1:	Barometric pres	OhPa
Line	2:	Wind speed	Om/s
Line	3:	Wind direction	Odeg

View 20	
Line 1: Rain fall	Omm
Line 2: Snow depth	Omm
Line 3: No text	


Active power limitation (Instant P max)

The power that can be generated by the PV plant at PCC is dependent on the PV panels and on the inverters.

PV Panel

The power that can be generated by the PV panels is dependent on plane of array (POA) solar irradiation and the back of module (BOM) temperature of the panels. The ASC supports 3 POA irradiation sensors and 3 BOM temperature sensors. These can be weighed against each other in order to generate representative POA irradiation and BOM temperature which eventually is used to determine the Instant maximum power possible to generate by the panels.

The Power Temperature Coefficient Model - This model applies a temperature correction to P_m to account for departures in cell temperature from those at SRC. P_m is assumed to be linear with respect to the effective irradiance if the temperature is constant. Eq. 2 represents this model. Zero subscripts denote performance at SRC.

 $\mathsf{P}_{\mathsf{m}} = \frac{\mathsf{E}_{\mathsf{e}}}{\mathsf{E}_{\mathsf{0}}} \cdot \mathsf{P}_{\mathsf{m}_{\mathsf{0}}} \cdot \left[1 + \gamma \cdot \left(\mathsf{T} - \mathsf{T}_{\mathsf{0}}\right)\right]$

Inverter efficiency

The efficiency of the inverter is listed on the inverter data sheet. Various definitions for efficiency exists; Peak, European (Euro), California (CEC). Generally the efficiency depends on the power drawn from the inverter. At low power the efficiency drops rapidly but from ~10% and up it is more or less static. A single parameter is added for the inverter efficiency:

ASC Solar

Throttle Counters

The ASC PM provides throttle counters that keep track of unutilized excessive PV energy. The ASC PM aggregates the delta between the requested power and the PV power available (Instant P max). To obtain accurate values it is recommended to install plane of array irradiation sensor(s) and back of module temperature sensor(s) and utilize the Active power limitation functionality.

In case Active power limitation is not utilized the PV power available (Instant P max) will be equal to the nominal size.

Four counters are included:

- Day counter
- Week counter
- Month counter
- Total counter

The counters are incremented under below circumstances:

- Requested power < Instant P max.
- Requested power <= Actual power.

A setting is added to compensate for potential deviations between the ASC PM measurements and the measurements done by the inverter(s). Deviations can arise from transmission losses or merely measurement inaccuracy.

View 17						
Line	1:	Throttled	total	OkWh		
Line	2:	Throttled	month	OkWh		
Line	3:	Throttled	day	OkWh		

ASC Solar - CASE

ASC-4 Solar. Brazil, Dec 2017. 4 MW PV capacity, 12 MW genset capacity and a Reuniwatt forecast system. It's purpose is to reduce the use of diesel and supply power to Oiapoque city and rural areas.

Presentation

Purpose

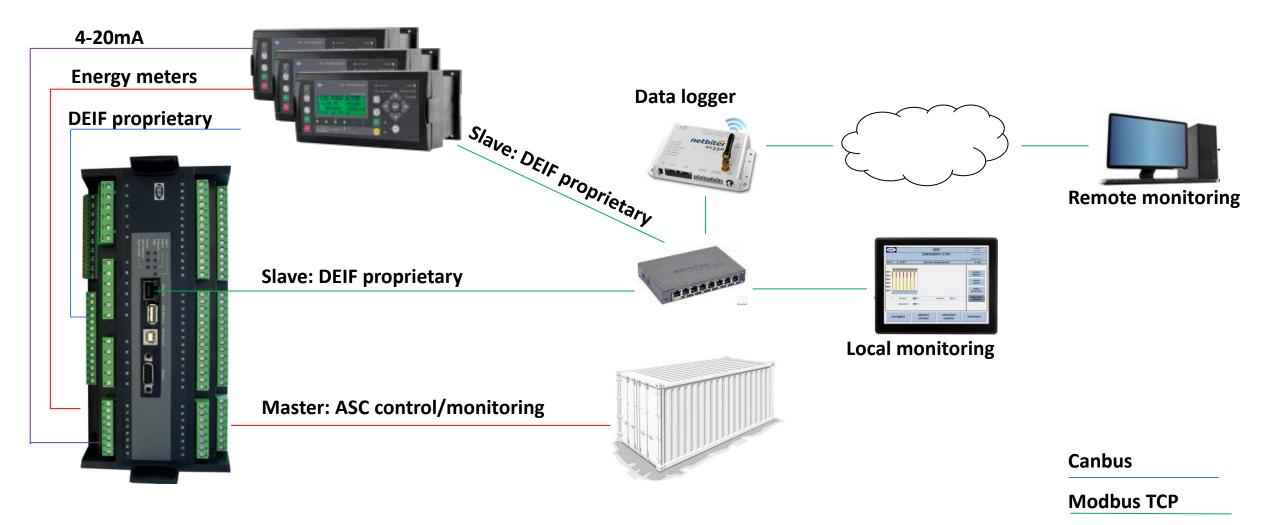
Introduction to DEIF ASC-4 Battery.

Content

Main features Power source & Energy source AC & DC couplings Charge scheme ESS interaction

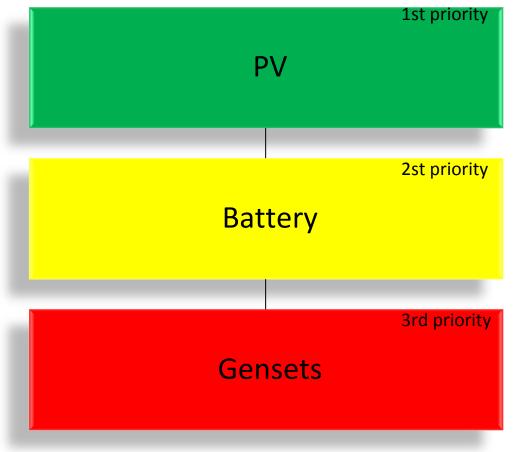
ASC-4 Battery, Seamless energy storage integration.

Energy or power source


The ASC-4 Battery handles applications that use battery power as the primary power source (instead of gensets) as well as applications that use battery power for short-term support (for instance to support gensets for a short period of time) equally well.

AC- or DC-coupled

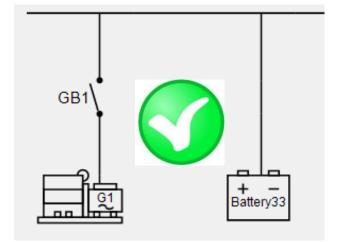
ASC-4 Battery is ideal for both AC- and DC-coupled applications. For AC-coupled systems, you can define battery charging and discharging scheme. Using the chargeScheme, you'll also be able to define the energy sources (gensets, PV or Mains) you allow for charging purposes.


Modbus RTU

Energy source & power source

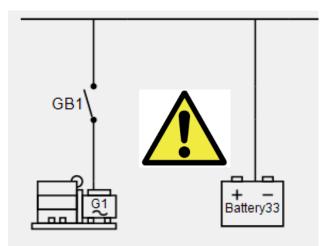
The controller placed highest in below source hiraki is preferred source.

Energy source


PV 2st priority Gensets 3rd priority Battery

1st priority

Power source


Energy source: The battery is intended to supply a load being the only source connected to the AC bus. Generating capacity will be subtracted the spinning reserve requirement for the diesel genset plant. This may result in all gensets stopping depending on load demand.

When the state of charge falls below the predefined power source threshold, the ASC will automatically switch into power source operation and startup the required number of gensets.Once the state of charge is above the energy source threshold, the ASC will return to energy source operation.

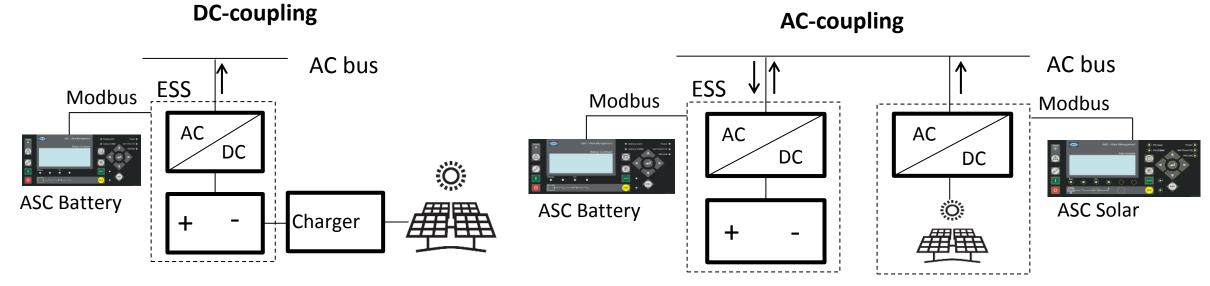
Power source: The battery is not intended to supply a load being the only source connected to the AC bus. Power source is used to take peak loads until genset start and improving power quality. The power reference is zero per default.

The reference will be set equal to the excessive loading only if the gensets are overloaded. The generating capacity will be subtracted any spinning reserve requested from PV, suppressing excessive diesel gensets on the busbar.

Source type

Selection to determine whether ESS is Energy or Power source.

🧭 Paramete	r "Operation	mode" (Channel 808	31)	×
Setpoint :				
	Battery Pow	ver Source	~	
Password le	vel:	customer	~	
Enable High Alarm				
Auto ackno Inhibits	owledge ~			
		Write	ОК	Cancel



ASC Battery AC & DC Couplings

AC- or DC-coupled

ASC-4 Battery is ideal for both AC- and DC-coupled applications. For AC-coupled systems, you can define battery charging and discharging scheme. Using the chargeScheme, you'll also be able to define the energy sources (gensets, PV or Mains) you allow for charging purposes.

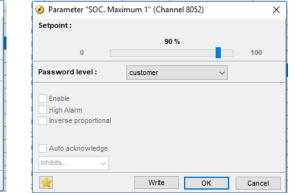
ASC Battery <u>not</u> responsible for charging.

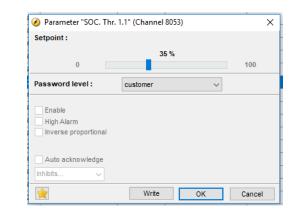
ASC Battery responsible for charging.

Coupling type

Selection to determine whether ESS is DC or AC coupled.

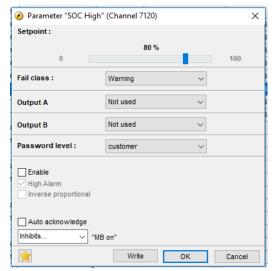
🧭 Parameter "Operation	mode" (Channel 8082	2)	×
Setpoint :			
DC-Coupled	Battery	\sim	
Password level :	customer	~	
Enable High Alarm Inverse proportional			-
Auto acknowledge			
	Write	ОК Са	incel

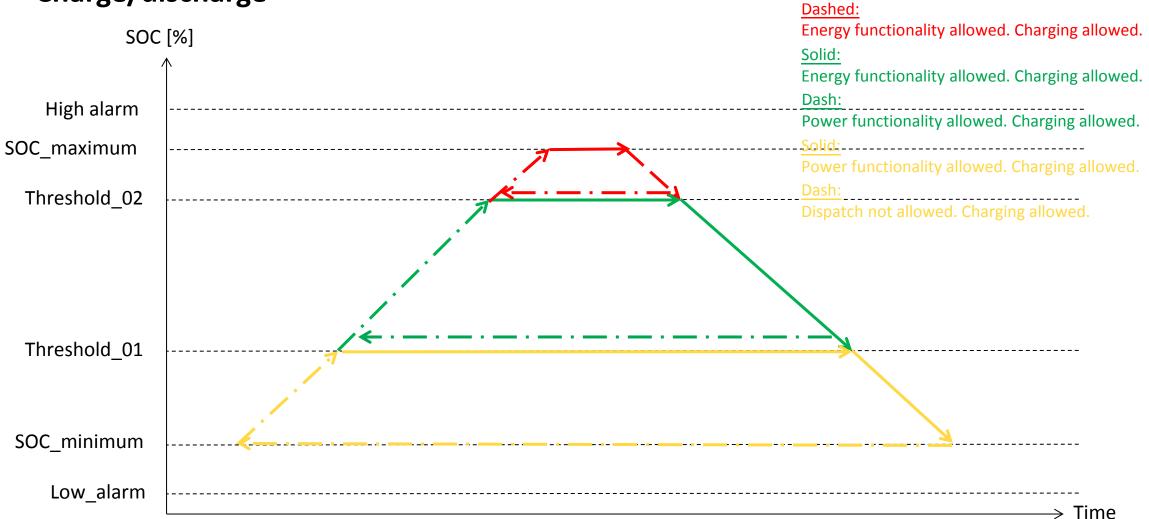

Charge scheme



Charge/discharge

Charge scheme is defined by numorous settings.

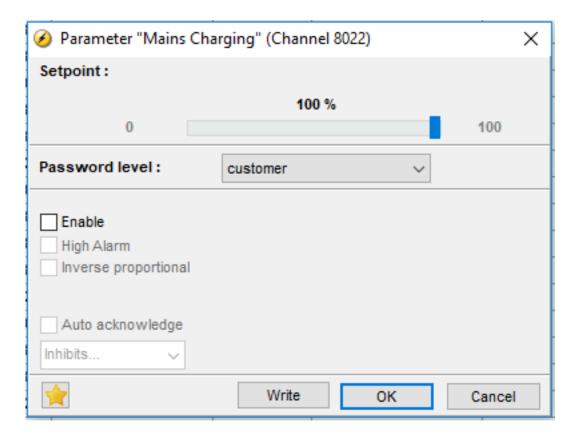

Setpoint :	imum 1" (Channel 8051)		×
0	20 %	100	
Password level :	customer	\sim	
Enable High Alarm			
Auto acknowledge			
	Write OK	Cano	el



Setpoint :	00.0/		
0	80 %		100
Password level :	customer	~	
Enable			
High Alarm			
Inverse proportional			
Auto acknowledge			

🥖 Parameter "SOC Lo	w" (Channel 7110)		×
Setpoint :			
0	20 %		100
Fail class :	Warning	~	
Output A	Not used	~	
Output B	Not used	~	
Password level :	customer	~	
Enable High Alarm Inverse proportional			
Auto acknowledge	"MB on"		
	Write	ОК	Cancel

Charge/discharge

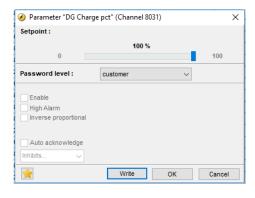

Solid:

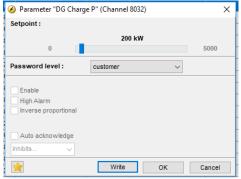
Energy functionality allowed. Charging not allowed.

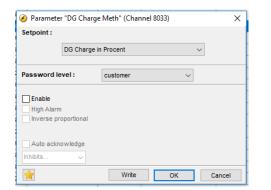
Charge rule

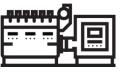
When charching, the maximum charge power is determined by this percentage of the rated battery power.

Enable determines if charging is allowed from Mains.

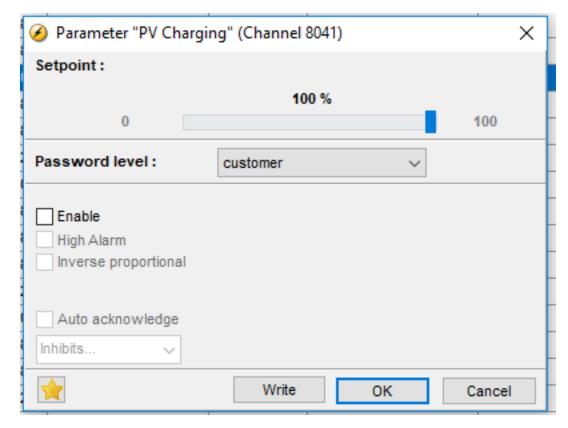



Charge rule


When charching, the maximum charge power is Determined by not loading the gensets higher than this percentage of the rated genset power on line.


When charching, the maximum charge power is determined by not loading the gensets higher than this value is available as spinning reserve.

Determines if to use percentage or kW setting. Enable determines if charging from gensets allowed.



Charge rule

When charching, the maximum charge power is determined by this percentage of the available surplus PV power.

Enable determines if charging is allowed from PV.

ASC BATTERY

Charge rule

Settings for defining maximum charge/discharge power. In case informed by BCU(BMS) as well lowest boundary will prevail.

🧭 Parameter "Minimur	n dispatch" (Channel 7063)	×	🧭 Parameter "Maximum dispatch" (Channel 7064)	×
Setpoint :			Setpoint :	-
_	-100 %		100 %	-
-100		100	-100	100
Password level :	customer	\sim	Password level : customer ~	
Enable High Alarm Inverse proportional			Enable High Alarm Inverse proportional	-
Auto acknowledge			Auto acknowledge	-
	Write OK	Cancel	Write OK	Cancel

Charge rule

Power source:

When acting as a Power source, or only charging is allowed, the power to charge with is determined by the connected sourced and associated charge rules.

Energy source:

When acting as an Energy source, only PV power will be accepted for charging according to the associated charge rule for PV. Even though charging from DG and/or Mains is enabled it will be disregarded

Alarms and limits

When SOC goes below this level associated alarm can be activated.

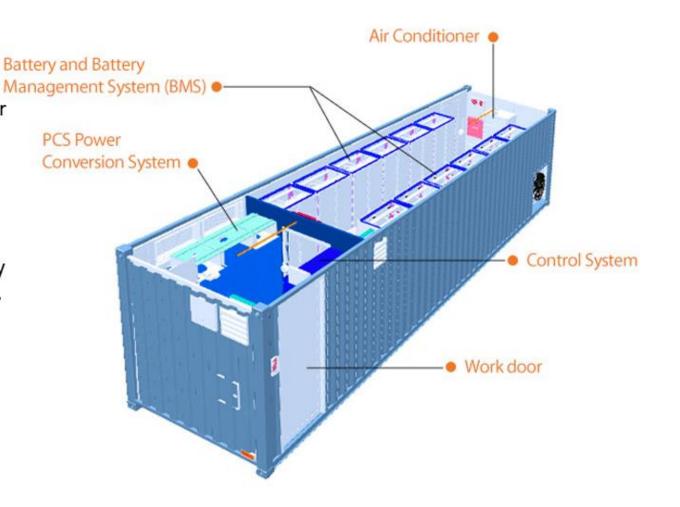
When SOC goes above this level associated alarm can be activated.

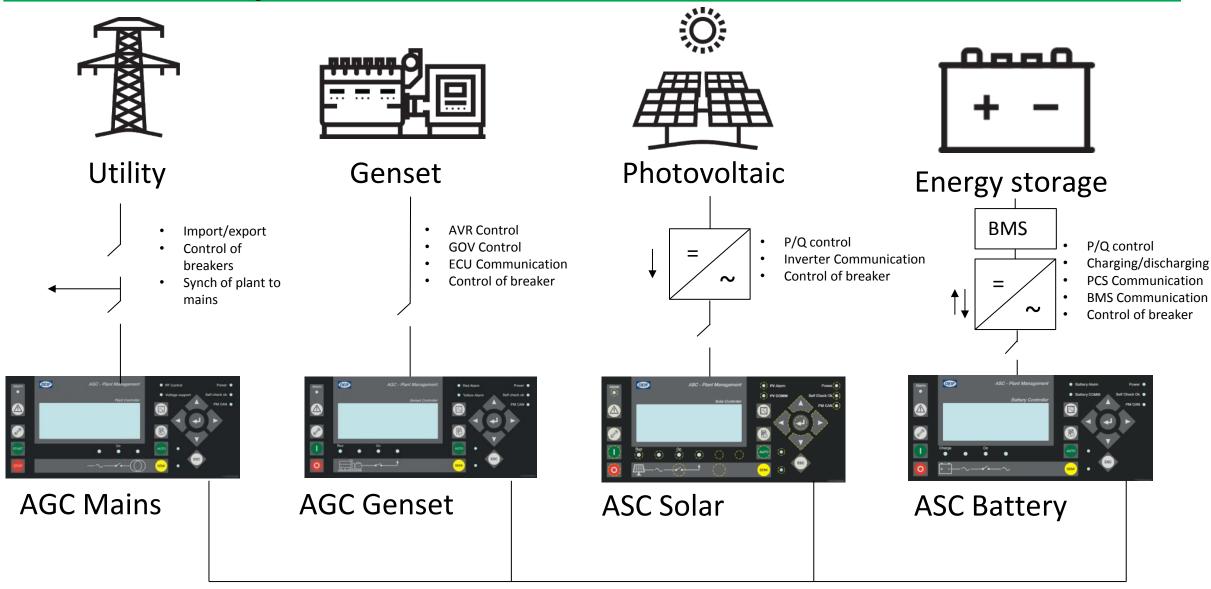
Setpoint :		
0	20 %	100
Fail class :	Warning	~
Output A	Not used	~
Output B	Not used	~
Password level :	customer	~
Enable		
Enable High Alarm		
High Alarm		
High Alarm		
High Alarm Inverse proportional	"MB on"	

Output B Not used ~					Setpoint :
Output A Not used Output B Not used Password level : customer Enable High Alarm Inverse proportional	100		80 %	0	
Output B Not used Password level : customer Enable High Alarm Inverse proportional	 	~	Warning		Fail class :
Password level : customer Enable High Alarm Inverse proportional		\sim	Not used		Output A
Enable High Alarm Inverse proportional		\sim	Not used		Output B
High Alarm Inverse proportional		~	customer	level :	Password
Auto acknowledge					High Ala
Inhibits V "MB on") on"		

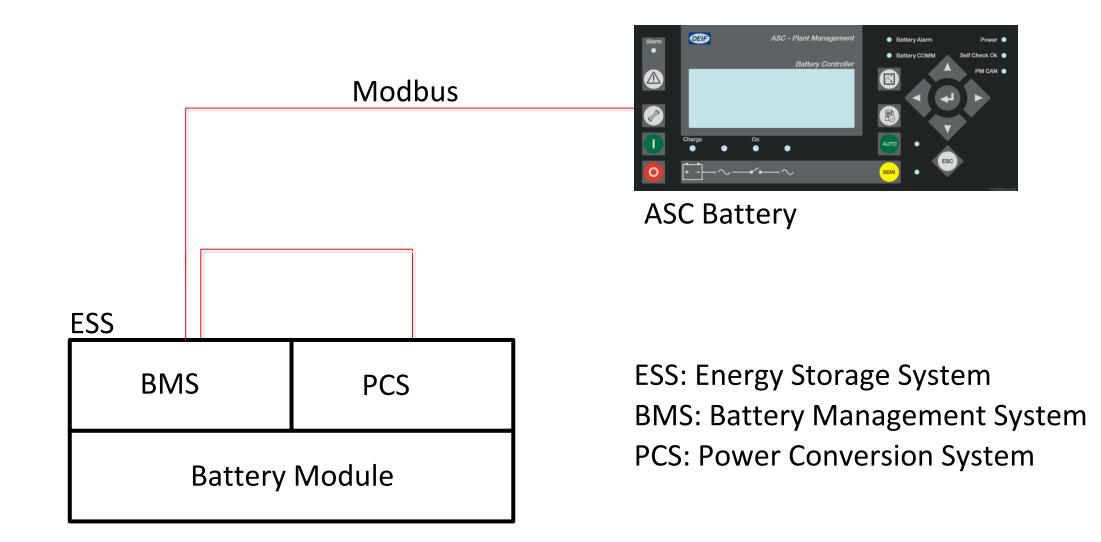
ESS Interaction

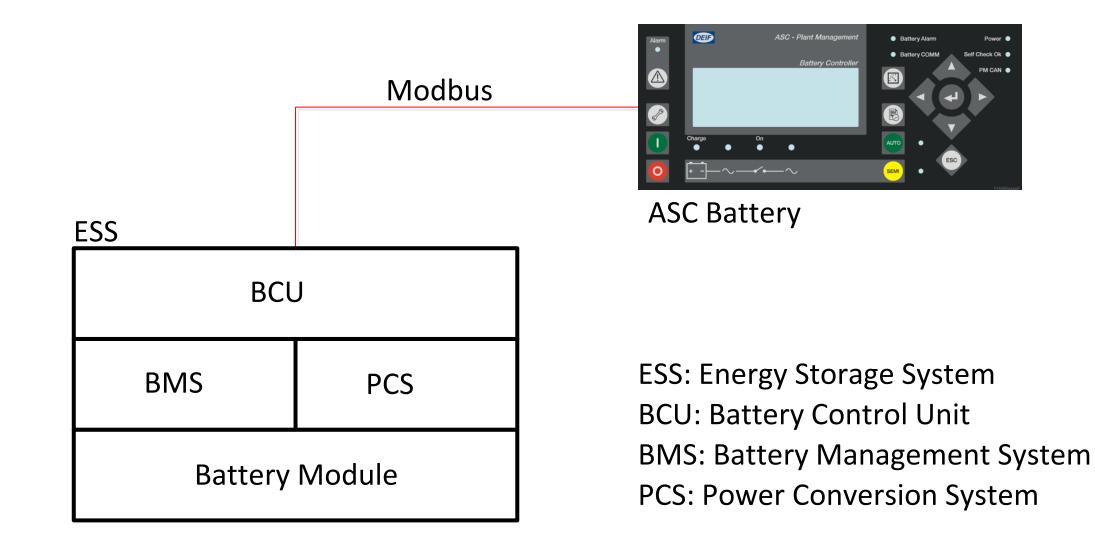
ESS makers:


The companies packeging everything in a container. Can be purely packeging companies or also PCS and/or BMS makers.


PCS makers:

The companies supplying the inverters. Typically the companies we already work with on PV side.


BMS makers:


The companies supplying the batteries and the batrery management system.

Energy Management System

ASC Battery - Case

ASC-4 Battery. Hawaii, Feb 2018. 200 kW PV capacity, a 150kW genset capacity, a 150kW/610kWh electrical storage and a 25kW utility incoming.

Local monitoring

Advanced Graphical Interface - AGI 300

Contact sales

The AGI 300 has been designed as an intuitive and user-friendly HMI for visualisation and active control for multiple applications and is available in 4.3", 7" and 15" sizes with a quality screen readable even in direct sunlight and at sharp angles, making it a safe and ideal choice for bridge installations.

Featuring touch screen system control and monitoring functionalities which eliminate the need for other instruments and save you both space and wiring, the AGI 300

connects both to all DEIF multi-line controllers and other brand controllers via standard communication protocols.

Data-sharing ability via Ethernet connections effectively enable the DEIF HMI to be used as a small SCADA system. Built-in Ethernet port switch functionality lets you connect the panels to small control systems without incurring extra costs for external switches. Connect to multiple serial devices with the multi-standard serial port or use the USB host to provide access for external storage devices.

Power Management Systems – Control & Supervision

One point management, control and supervision of multiple gensets and bus-tie breakers.

Alarm - Handling & Monitoring

View historical alarm data and accept active alarms.

Energy Monitoring System (EMS)

Track your energy consumption to optimise and implement the energy awareness on board your vessel.

Graphical Interface – Mechanical & Electrical Systems

System overviews for mechanical and electrical equipment. Trend measured values to monitor operation performance or when carrying out fault finding procedures.

Features

- State-of-the-art HMI
- · Unique design tool
- Control and monitor your system
- · Data-logging and alarm handling
- · Designed for harsh environments

Production Active power delivered by gensels 600 kW	Reserves Spinning reserve generated by this PV 0 kW	PV energy counter Total 46 kWh Day 0 kWh
Reactive power delivered by gensets 398 kVAr Alains active power 0 kW	Spinning regerve generated all the PV's 0kW Minimum genset load required 288 kW	PV curtailment counter Total 45689 kWh Day 0 kWh
Mains reactive power OkVAr Active PV power production OkW	Online nominal genset power 960 kW	Performance ratio Total 0.0% Day 0.0%
Reactive PV power production 0 kVAr		Penetration ratio Total 0.0% Day 0.0%
	.	_
		-

JNL Energy counters	3 Use	r: Guest 2017/12/10 13:48:06 A 💴
Performance ratio	PV energy counter	Mains import energy counter
Total 0.0%	Total 46 kWh	Total O KWh
Year 0.9%	Month 898 kWh	Year O KWh
Month 10.2%	Week OkWh	Month O kWh
Week 0.0%	Day OkWh	Week OkWh
Day 0.0%		Day O KWh
Penetration ratio	PV curtailment counter	Mains export energy counter
Total 0.0%	Total 45689 kWh	Total O kWh
Year 0.3%	Month 7890 kWh	Year O KWh
Month 0.6%	Week OkWh	Month O KWh
Week 0.0%	Day OkWh	Week OkWh
Day 0.0%		Day OkWh
		Generator energy counter
		Total 120877 kWh
		Year 128877 kWh
		Month 128877 kWh
		Week 46608 kWh
		Day 3403 kWh
~		_
Â	Z	
	_	

🛱 Meteorologia	al		17/12/10_13:47:42 agement Semi 🛆 💴
POA Irradiation 1	1000 W/m2	GH Irradiation	1000 W/m2
POA Irradiation 2	1000 W/m2	Ambient Temperature	25.7 c
POA Irradiation 3	1000 W/m2	Humidity	86 %
POA Irradiation	1000W/m2	Barometric pressure	1013hPa
		Wind speed	5m/s
BOM Temperature 1	25 c	Wind direction	143 deg
BOM Temperature 2	25 c	Rain fall	3mm
BOM Temperature 3	25 c	Snow depth	2mm
BOM Temperature	25 c		
â	Z		≡

	Active power	Reactive power		Active power	Reactive powe
Inverter #1	30 KW	-0.3 kvar	Inverter #12	90 kW	-0.3 kvar
inverter #2	90 kW	-0.3 kvar	Inverter #13	90 kW	-0.3 kvar
Inverter #3	90 KW	-0.3 kvar	Inverter #14	90 kw	-0.3 kvar
Inverter #4	90 kW	-0.3 kvar	Inverter #15	90 kW	-0.3 kvar
Inverter #5	90 KW	-0.3 kvar	Inverter #16	90 kW	-0.3 kvar
Inverter #6	90 kW	~0.3 kvar	Inverter #17		
Inverter #7	90 KW	-0.3 kvar	Inverter #18		
inverter #8	90 KW	-0.3 kvar	Inverter #19		
inverter #9	90 kW	-0.3 kvar	Inverter #20		
Inverter #10	90 KW	-0.3 kvar	Inverter #21		
Inverter #11	90 kW	-0.3 kvar	Total power	1380 kW	-4.8 kvar
PV protocol: D	elta RPI				

🗾 Inver	ter 6		User: G	uest 2017/12/10 13:55:30 Power management Sem	
Inverter r	mber: DELTA RF model: N/A temp: 27°c te: -1 3	910000001		Energy produced Energy produced today Operating hours Operating time today	986 kWh 23.5 kWh 126 Hour 109 min
UL1-L2 UL2-L3 UL3-L1 UL1-N UL2-N UL2-N UL3-N f L1	900 v AC N/A N/A N/A N/A N/A 51.2 Hz	DC voltage string 01 DC power string 01 DC voltage string 02 DC voltage string 03 DC power string 03 DC voltage string 04	0 V 0 KW 0 V 0 KW 0 V N/A 0 V N/A	Rated power Rated reactive power AC active power AC reactive power AC apparent power Active power ref Reactive power ref	N/A N/A 90 kW -0.3 kwar 1.5 kWA 0 0
G	2	Z			=

Meter	Active power	Reactive power	Input	Meter	Active power	Reactive power	Input
1	28 xw	13 kvar	0000	9			
2	26 kW	11 kvar	0000	10			
3	13xW	9 kvar	0000	11			
4				12			
5				13			
6				14			
7				15			
8				16			
DG or	wer meter prote	col: DEIF MIC 4000					

Set points kW		Operation mode
Fixed Power set point	500	
Peak Shaving set point	750	Island operation
Mains power export set point	1000	
Set points kVAr		Fixed power
Fixed reactive power set point	500	Peak shaving
Cosphi reference	0.90	
Cosphi Inductive/capacitive	Inductive	Mains power export
Inductive Capacitive		Power management
Q reference type in grid-lied op	eration: Cospgi superior	
Off Cosphi fixed	Cosphi imp/exp	
Cosphi superior Q fixed	Qimplexp	

🗘 Config 2	ı	User: master 2017/12 Power manager	2/10 13:57:39 ment Semi 🛆 💴	
Spinning reverve				
Spinning reserve in mains parallel operation	0 %			
Spinning reserve in island operation	10 %			
Origin of spinning reserve	ASC settings			
ASC PV				
Minimum load procentage				
Minimum DG load procentage in island 1	30 %			
Minimum DG load procentage in island 2	30 %			
Minimun DG load procentage island selection Min. DG load set 1				
Load set 1 Load set 2				
A 2]		E	

\land Active Ala	ırms	User: master Power	2017/12/10 13 management	58:39 Somi 🛆 🕖
Time		Description		
12-10-2017 13:46:50	7710 - External communication error 2			
				Ack. alarm
				Ack. alarm

Remote monitoring

How it works:

CONNECTING THE GENERATOR

A Netbiter communication gateway connects to the solar panel using a serial, Ethernet or I/O connection. The gateway sends information via the Internet or the cellular network (GSM/GPRS/3G) to the cloud-based Netbiter Argos data center.

The data is encrypted both to, and from the Argos server.

ONLINE ACCESS

By logging on to Netbiter Argos at www.netbiter.net, you can see all parameters of your solar panel via a computer, tablet or smart phone.

SET UP AND CONFIGURE IN A MATTER OF MINUTES

Just connect the Netbiter gateway to your solar panel and then configure it online at your leisure.

Example dashboard showing live values from a solar/diesel plant.

PV monitoring

It can be selected whether the ASC is to poll key data from the inverter(s) and place it in designated Modbus area for a monitoring system to read. PV monitoring can be used both together with unicast and broadcast topologies. The number of nodes determines the number of inverters the ASC should poll data from. A maximum of 42 nodes can be monitored. The ASC expects that the ModbusID's of the inverters are consecutive in order starting from the selected ModbusID and forward.

PV N	lonitoring	
	Description:	Enable/disable of PV monitoring and selection of the number of inverters to monitor
	Setpoint:	1 (140)

In addition a "PV monitoring error" is present.

It is functional in both unicast and broadcast topologies.

In case of a communication breakdown to one or more of the inverters on the communication line it is possible to provoke a reaction on the ASC.

A PV communication error protection menu is added:

Menu 7580 "PV monitoring error"

This protection is provided with fail class handling.

The associated log entry will inform which inverter is missing on the communication line.

PV mon	itor err.	
	nor en.	
De De	escription:	PV monitoring supervision alarm
Fa	ailclass:	Warning

PV monitoring

70 registers is reserved for each inverter.

Below is the Modbus indexing for the first inverter presented. Registers for the following inverters will come consecutively.

Address	Name	Data type	Description
47000-47015	SN	String	Serial number (format maker dependent)
47016-47031	MODEL	String	Inverter model (format maker dependent)
47032	P_SIZE	U16	Rated power size [0.1kW]
47033	Q_SIZE	U16	Rated reactive power size [0.1kVAr]
47034	COUNTRY	U16	Country code (format maker dependent)
47035	DCU_01	U16	DC voltage string 01 [0.1V]
47036	DCP_01	S16	DC power string 01 [0.1kW]
47037	DCU_02	U16	DC voltage string 02 [0.1V]
47038	DCP_02	S16	DC power string 02 [0.1kW]
47039	DCU_03	U16	DC voltage string 03 [0.1V]
47040	DCP_03	S16	DC power string 03 [0.1kW]
47041	DCU_04	U16	DC voltage string 04 [0.1V]
47042	DCP_04	S16	DC power string 04 [0.1kW]
47043	ACP	S16	AC active power [0.1kW]
47044	ACQ	S16	AC reactive power [0.1kVAr]
47045	ACS	S16	AC apparent power [0.1kVA]
47046-47047	KWH	U32	Energy produced [kWh]
47048-47049	KWH_DAY	U32	Energy produced today [0.1kWh]
47050-47051	HOURS	U32	Operating hours [h]
47052	MINUTES_DAY	U16	Operating minutes today [min]
47053	CAB_TEMP	S16	Cabinet temperature [0.1C]
47054	L1N	U16	Phase1 to neutral voltage [0.1V]
47055	L2N	U16	Phase2 to neutral voltage [0.1V]
47056	L3N	U16	Phase3 to neutral voltage [0.1V]
47057	L1L2	U16	Phase1 to phase2 voltage [0.1V]
47058	L2L3	U16	Phase2 to phase3 voltage [0.1V]
47059	L3L1	U16	Phase3 to phase1 voltage [0.1V]
47060	GRIF_FREQ	U16	Grid frequency [0.1Hz]
47061	PREF	S16	Active power reference (format maker dependent).
47062	QREF	S16	Reactive power reference (format maker dependent).
47063	STATE	U16	Inverter state (format maker dependent)
47064	FAULT_CODE	U16	Fault code (format maker dependent)
47065-47068	RESERVED		-
47069	ALIVE	U16	0: Inverter not alive on communication link.
			1: Inverter alive on communication link.
Version 1.00.0			

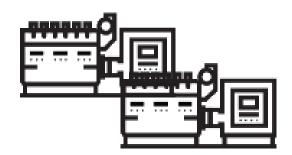
Monitoring

Weather data monitoring

The weather data measured by ASC is placed in the Modbus for a monitoring system to read.

Below is the Modbus indexing for the weather related data.

40036	POA_Irradiation_01	Plane of array irradiation sensor 1 [W/m2]
40037	POA_Irradiation_02	Plane of array irradiation sensor 2 [W/m2]
40038	POA_Irradiation_03	Plane of array irradiation sensor 3 [W/m2]
40039	POA_Irradiation	Plane of array irradiation weighted [W/m2]
40040	BOM_Temperature_01	Back of module temperature sensor 1 [0.1C]
40041	BOM_Temperature_02	Back of module temperature sensor 2 [0.1C]
40042	BOM_Temperature_03	Back of module temperature sensor 3 [0.1C]
40043	BOM_Temperature	Back of module temperature weighted [0.1C]
40062	GH_Irradiation	Global horizontal irradiation [W/m2]
40063	Ambient_Temperature	Ambient temperature [0.1C]
40064	Relative_Humidity	Relative humidity [%]
40065	Barometric_Pressure	Barometric pressure [hPa]
40066	Wind_Speed	Wind speed [m/s]
40067	Wind_Direction	Wind direction [deg]
40068	Rain_Fall	Rain fall [mm]
40069	Snow_Depth	Snow depth [mm]



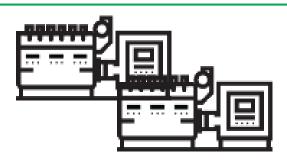
PV_P_throttling	PV active power reference [%].
PV_P_throttling_act	PV throttling active 0: Inactive 1: Active
PV_P_throttled_tot_kwh	Throttled energy counter total [kWh] NOTE: Resolution follows ASC PM scaling selected in menu 9030!
PV_P_throttled_mth_kwh	Throttled energy counter month [kWh] NOTE: Resolution follows ASC PM scaling selected in menu 9030!
PV_P_throttled_wk_kwh	Throttled energy counter week [kWh] NOTE: Resolution follows ASC PM scaling selected in menu 9030!
PV_P_throttled_day_kwh	Throttled energy counter day [kWh] NOTE: Resolution follows ASC PM scaling selected in menu 9030!
Panel_Pmax_instant_kW	Instant maximum active power that can be generated by PV panels [kW] NOTE: Resolution follows ASC PM scaling selected in menu 9030!
Panel_Smax_instant_kVA	Instant maximum apparent power that can be generate by inverter(s) [kVA] NOTE: Resolution follows ASC PM scaling selected in
	PV_P_throttling_act PV_P_throttled_tot_kwh PV_P_throttled_mth_kwh PV_P_throttled_wk_kwh PV_P_throttled_day_kwh Panel_Pmax_instant_kW

Monitoring

Genset data monitoring

The genset data measured/received by ASC is placed in the Modbus for a monitoring system to read. Below is the Modbus indexing for the genset related data.

40010/40011	DG_P_tot	Active power delivered by the gensets [kW].
40012/40013	DG_P_nom	Online nominal genset power [kW].
40014/40015	DG_Q_tot	Reactive power delivered by the gensets [kVAr].
40016/40017	DG_P_min	Minimum genset load required [kW].
40018/40019	Mains_P_tot	Mains active power [kW].
40020/40021	Mains_Q_tot	Mains reactive power [kVAr].

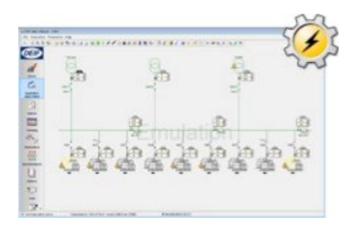

Monitoring

Genset data monitoring (Power Management)

The genset data measured/received by ASC is placed in the Modbus for a monitoring system to read. Below is the Modbus indexing for the

genset related data.

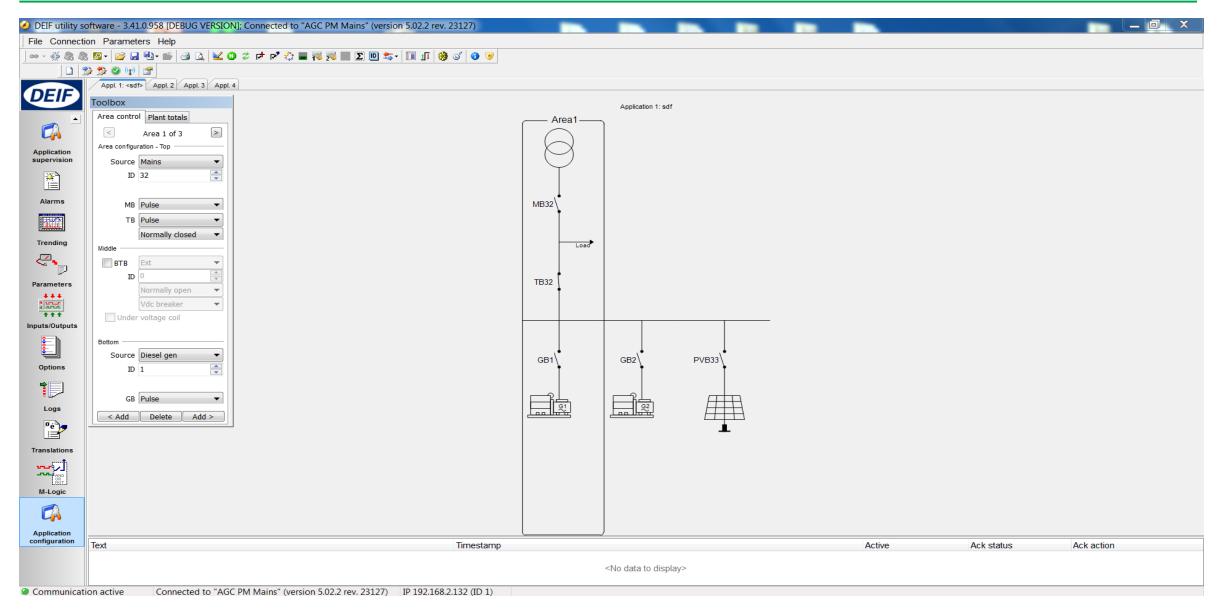
Power nominal ID[1;16]	1510-1525
Power ID[1;16]	1526-1541
Reactive power ID[1;16]	1542-1557
Power ID[17;32]	1569-1584
Reactive power ID[17;32]	1585-1600
Power ID[33;40]	1601-1608
Reactive power ID[33;40]	1609-1616
TB power ID[17;32]	1633-1648
MB power transducer used (Bit Wise ID[17;32])	1649
TB power transducer used (Bit Wise ID[17;32])	1650
BTB power transducer used (Bit Wise ID[33;40])	1651
BTB NOT externally controlled (Bit Wise ID[33;40])	1652
Power nominal ID[17;32]	1653-1668
GB position ON (Bit Wise ID[1;16])	1701
GB position OFF (Bit Wise ID[1;16])	1702
DG Volt/Feg Ok (Bit Wise ID[1;16])	1703
DG Ready Auto start (Bit Wise ID[1;16])	1705
Any alarm present (Bit Wise ID[1;16])	1707
DG Running (Bit Wise ID[1;16])	1709
GB synchronizing (Bit Wise ID[1;16])	1711
MainsOk (Bit Wise ID[17;32])	1712
Mains in Auto (Bit Wise ID[17;32])	1713
Any alarms (Bit Wise ID[17;32])	1714
MB position ON (Bit Wise ID[17;32])	1715

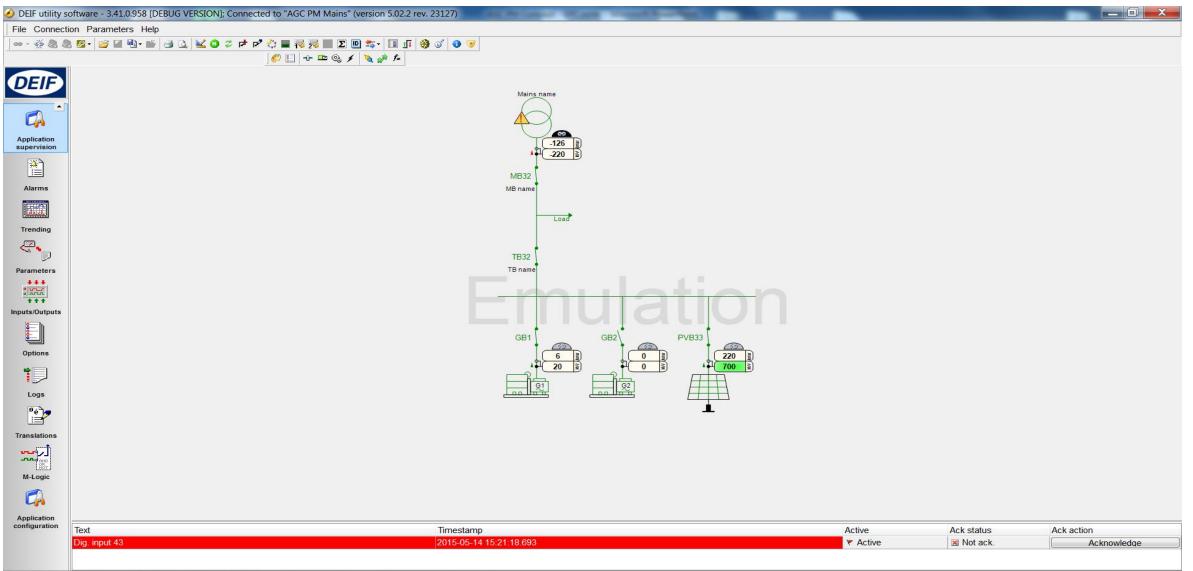

EngineType [ID17;32]. 16) Detroit (DDEC). 17) Deutch (EMR). 18) JohnDeere (JDEC). 19) Iveco (Iveco). 20) Perkins (Perkins). 21) Caterpillar (Caterpillar) 22) Volvo (VPDEC). 23) Volvo (VPDEC). 24) Scania (EMS). 25) Scania (EMS2). 26) MTU (MDEC 302). 27) MTU (MDEC 303). 28) MTU (ADEC). 29) Cummins (Cummins). 30) Electronic J1939 eng.	35240-35255
(GenericJ1939). Conversion for OilPressure.	35256-35271
CoolWater and FuelLevel.	BIT0-1: Oilpressure.
Coonvaler and rueizevei.	BIT2-3: CoolWater.
	BIT2-3. Cooliviater. BIT4-5: FuelLevel.
	DITA-J. TUCILOVEI.

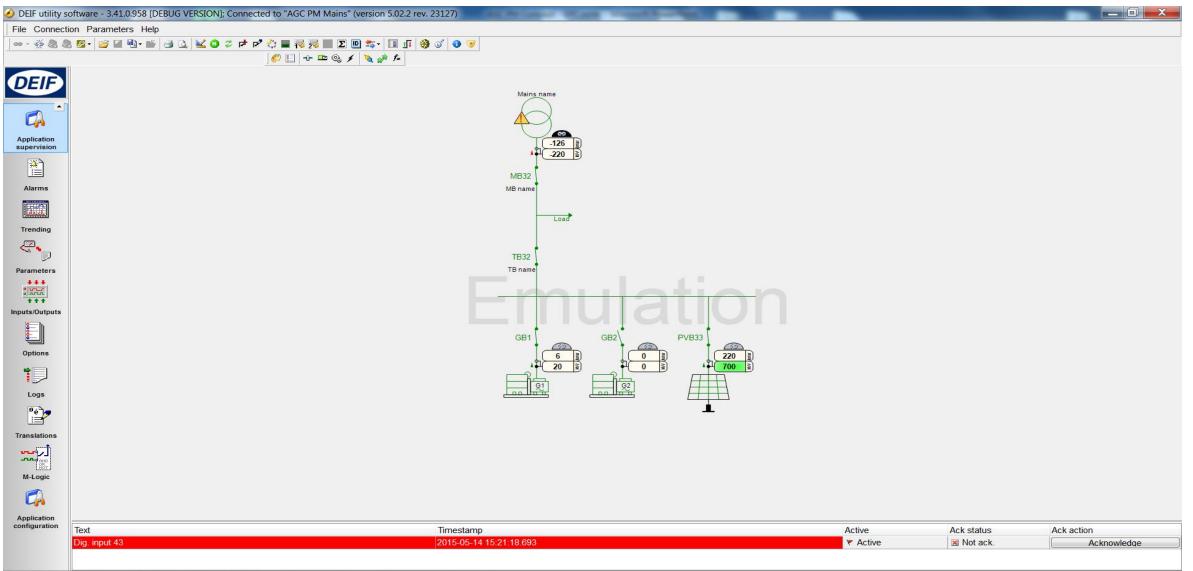
DEIF Utility Software – USW-3

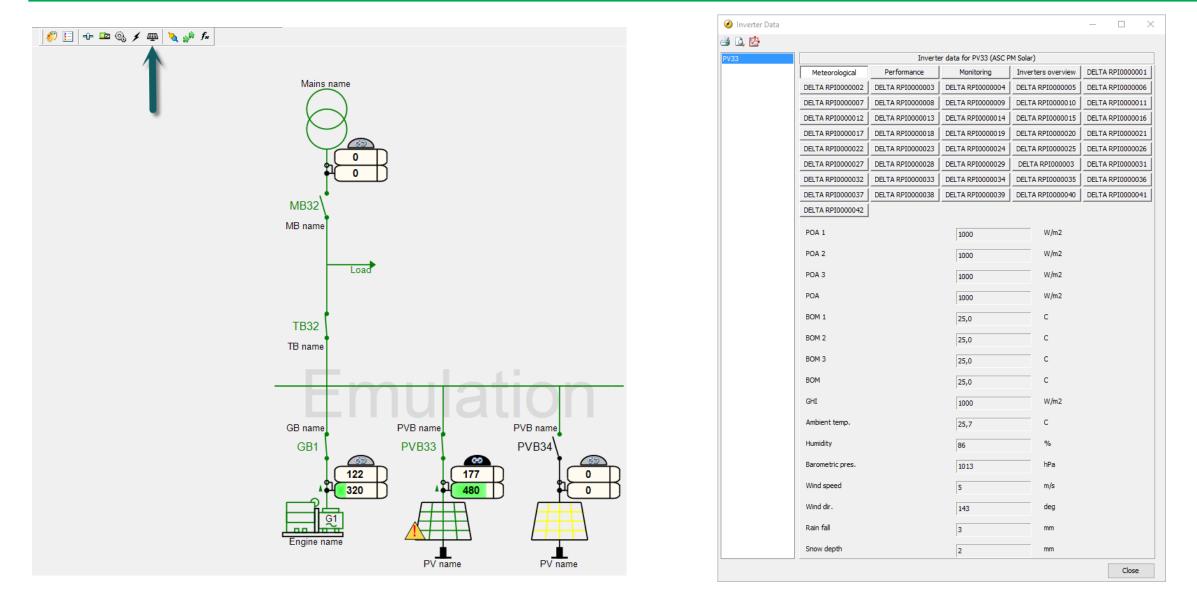
DEIF's Utility Software v.3 (USW-3) is a unique tool for engineers, service personel and end-users to configure and supervise one or several interconnected genset controllers, available for free download <u>here</u>.

Easy to install, the general purpose software works off-the-shelf using Ethernet or USB cable communication to configure, commission and supervise both single gensets and plants of up to 256 units.

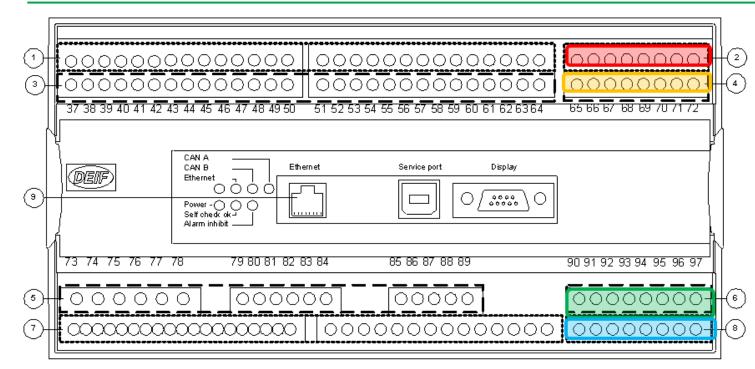

The utility tool is compatible with a range of DEIF controllers; it adjusts easily to the capabilities of the connected devices and has been designed with versatility in view.


M-Logic allows complex logic customisation with configuration and evaluation of up to 40 logic expressions, including for instance configuration of user level access, and features innovative pre-installation configuration and emulation of plant design.


Incorporating extensive functionalities including overviews of alarms, coolant temperatures, plant values, and fuel consumption, the USW-3 is also an intuitive, easy-to-use tool for end users to operate on a day-to-day basis.


Application modes

- Graphical tool for plant single line diagram
- · Set controller parameters and configure advanced logic
- Configure controller I/O and external I/O equipment
- Translation of controller display texts
- AOP push button configuration
- · Controller firmware upgrade
- Security and access configuration
- · Save/restore the entire plant setup to files
- User platform for Emulation Solutions
- Visualise dynamic plant and individual genset behaviour
- · Display of all engine data
- Display of all electrical data
- · Monitor the dynamic behaviour of measurements
- Display of fuel consumption and power production
- · Emulate various external events
- Alarm monitoring
- · Localised to English, Russian and Chinese
- Connects over USB, RS485 or TCP/IP to controllers



- DEIF developed platform
- HW manufactured in Denmark
- Flexible configuration
- Marine approved platform

HW

1 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72	 Power supply 8-36Vdc Power supply 11W 6 relay outputs 2 pulse inputs (kWh, kVArh) 5 digital inputs
CAN A CAN B Ethernet Ethernet Service port Display Image: Self check ok Alarm inhibit Image: Self c	I/O 13 x binary inputs, 4 relay outputs (Option M12)
() ()<	Communication (Option N) Modbus TCP/IP sms/e-mail
3 x Multi inputs, (VDO, PT100, 0-40Vdc, 4-20mA) 2 x CAN ports, power management 7 x binary inputs	AC measurements 3 x Current measurements 3 x Inverter voltage measurements 1 x Neutral 3 x BUS/Grid voltage measurements 1 x Neutral

HW

Extra outputs (Inverter)

4 x relay outputs

2 x 0 - 20mA (Option E2)

Extra communication or extra I/O Modbus RTU, RS485 (Option H2) 7 x digital inputs (Option M13.2) 4 x relays (Option M14.2)

Extra I/O

7 x digital inputs (Option M13.6) 4 x relays (Option M14.6) 4 x 4...20mA inputs (Option M15.6)

2 x 0(4)...20mA outputs (Option F1)

Extra communication or extra I/O

Modbus RTU, RS485 (Option H2.8) 7 x digital inputs (Option M13.8) 4 x relays (Option M14.8) 4 x 4-20mA inputs (Option M15.8)