

# ИНСТРУКЦИЯ ПО УСТАНОВКЕ И НАСТРОЙКЕ



# САN модули входов/выходов, CIO 308 8 аналоговых входов

- Монтаж
- Клеммы и подключение
- Настройка при помощи ПО USW3



DEIF A/S · Frisenborgvej 33 · DK-7800 Skive Tel.: +45 9614 9614 · Fax: +45 9614 9615 info@deif.com · www.deif.com

Document no.: 4189341078B SW version: 1.10.0

| 1. | Введение                                                                     |    |
|----|------------------------------------------------------------------------------|----|
|    | 1.1. Предупреждения, правовая информация и безопасность                      | 3  |
|    | 1.1.1. Предупреждения и примечания                                           | 3  |
|    | 1.1.2. Правовая информация и ответственность                                 | 3  |
|    | 1.1.3. Правила техники безопасности                                          | 3  |
|    | 1.2. Об инструкции по установке и настройке                                  | 4  |
|    | 1.2.1. Назначение                                                            | 4  |
|    | 1.2.2. Пользователи                                                          | 4  |
|    | 1.2.3. Содержание и структура руководства                                    | 4  |
| 2. | Монтаж и подключение                                                         |    |
|    | 2.1. Упаковка и хранение                                                     | 5  |
|    | 2.2. Монтаж                                                                  | 5  |
|    | 2.2.1. Установка модулей CIO                                                 | 5  |
|    | 2.2.2. Габаритные размеры                                                    | 5  |
|    | 2.3. Общие функции модулей CIO                                               | 6  |
|    | 2.4. Подключение модулей CIO                                                 | 8  |
|    | 2.4.1. Описание клемм CIO 308                                                | 8  |
|    | 2.4.2. Подключение CIO 308                                                   | 11 |
|    | 2.4.3. CAN шина                                                              | 12 |
| 3. | Связь СІО с контроллером                                                     |    |
|    | 3.1. Настройка связи                                                         | 14 |
|    | 3.1.1. Пошаговое руководство по первоначальной настройке связи с модулями СЮ | 15 |
|    | 3.1.2. Пошаговое руководство по обновлению прошивки модулей CIO              | 15 |
| 4. | Конфигурация входов/выходов                                                  |    |
|    | 4.1. СЮ инфо                                                                 | 16 |
|    | 4.2. Реле состояния модуля                                                   | 16 |
|    | 4.3. Аналоговые входы                                                        | 19 |
|    | 4.3.1. Настройка аналоговых входов                                           | 19 |
|    | 4.3.2. Компенсация температуры холодного спая для термопар                   | 20 |
|    | 4.3.3. Контроль целостности цепей подключения датчиков                       | 22 |
|    | 4.3.4. Тексты на дисплее                                                     | 24 |
|    |                                                                              |    |

# 1. Введение

### 1.1 Предупреждения, правовая информация и безопасность

### 1.1.1 Предупреждения и примечания

В документе для выделения важной информации используются предупреждения и примечания. Из общего текста они выделяются с помощью следующих знаков:

#### Предупреждения



Предупреждения указывают на потенциально опасные ситуации, которые могут привести к тяжелым травмам, смерти людей или к повреждению оборудования в случае нарушения определенного порядка действий.

#### Примечания



В примечаниях содержатся важные сведения общего характера.

### 1.1.2 Правовая информация и ответственность

Компания DEIF не несет ответственность за установку и эксплуатацию генераторного агрегата. Все вопросы по установке и эксплуатации управляемого контроллером генераторного агрегата решаются компанией, ответственной за монтаж и эксплуатацию генераторного агрегата.



#### Изменения

Компания DEIF A/S сохраняет за собой право вносить изменения в настоящую документацию без предварительного уведомления.

Английская версия этого документа всегда содержит самую актуальную информацию о продукции. Компания DEIF не несет ответственность за неточности допущенные при переводе документации. Обновление переведенных документов осуществляется с задержкой. При обнаружении расхождений в документации необходимо руководствоваться версией документа на английском.

### 1.1.3 Правила техники безопасности

Работы по монтажу блока связаны с опасностью поражения электрическим током. Поэтому все работы должны выполняться только квалифицированными специалистами, осознающими все риски, связанные с проведением работ на электрооборудовании под напряжением.



В устройстве могут присутствовать токи и напряжения, опасные для жизни и здоровья человека. Категорически запрещается прикасаться к клеммным зажимам, так как это может привести к тяжелым травмам или смерти.

### 1.2 Об инструкции по установке и настройке

### 1.2.1 Назначение

Инструкция по установке содержит общее описание устройства, инструкцию по монтажу, описание входов/выходов и особенностей их подключения.

Документ предоставляет информацию, необходимую для правильной установки устройства.



Перед началом работы с контроллером необходимо внимательно ознакомиться с данным документом. Несоблюдение изложенных в документе требований может стать причиной серьезных травм персонала и повреждения оборудования.

### 1.2.2 Пользователи

Инструкция по установке предназначена для лиц, ответственных за разработку схем и установку оборудования. Например, для изготовителей щитов управления. Также она может быть полезна и другим пользователям.

### 1.2.3 Содержание и структура руководства

Руководство разделено на главы, каждая из которых начинается с новой страницы.

# 2. Монтаж и подключение

# 2.1 Упаковка и хранение

Модули CIO поставляются в прочной упаковке для предотвращения повреждений при транспортировке. При их получении необходимо проверить маркировку. Далее необходимо осмотреть упаковку и изделие на предмет внешних повреждений вызванных его транспортировкой. При обнаружении повреждений необходимо немедленно сообщить ближайшему представителю компании DEIF. Если устройство не устанавливается сразу, оно должно храниться в оригинальной упаковке, в сухом, чистом помещении.

# 2.2 Монтаж

### 2.2.1 Установка модулей CIO

Модули СЮ предназначены для монтажа в закрытом шкафу на DIN-рейку. Модуль может быть установлен на рейках TS35 или G-type. Диапазон рабочих температур модуля от -40 до + 70 °C.

### 2.2.2 Габаритные размеры

Размеры модуля CIO 308 в мм (дюймах):



# 2.3 Общие функции модулей CIO



#### 1. LED1 (Индикатор состояния модуля)

Светодиодный индикатор (LED1) показывает состояние модуля CIO и реле Status (кл. 3-4). Реле Status может быть настроено, как реле состояния модуля CIO или, как конфигурируемое реле. В зависимости от его настроек меняется индикация LED1:

#### Реле состояния

| Цвет индикатора  | Описание                                      |
|------------------|-----------------------------------------------|
| Зеленый          | Модуль СІО работает нормально, реле замкнуто. |
| Красный          | Неисправность модуля CIO, реле разомкнуто.    |
| Красный мигающий | ID модуля 0, реле разомкнуто.                 |

#### Конфигурируемое реле

| Цвет индикатора  | Описание                                             |
|------------------|------------------------------------------------------|
| Зеленый          | Модуль СІО работает нормально, реле замкнуто.        |
| Отключен         | Модуль СІО работает нормально, реле разом-<br>кнуто. |
| Красный          | Неисправность модуля СІО, реле разомкнуто.           |
| Красный мигающий | ID модуля 0, реле разомкнуто.                        |
| Желтый           | Неисправность модуля CIO, реле замкнуто.             |

#### 2. Терминальный резистор

Модуль CIO имеет встроенный 120 Ом терминальный резистор, который подключается переключателем (S1), расположенным под клеммой 5. Обратитесь к разделу «Подключение шины CAN» для получения дополнительной информации.

#### 3. LED2 (Индикатор шины CAN)

Светодиодный индикатор (LED2) показывает состояние связи с ведущим контроллером. Индикатор расположен под клеммой 7.

| Цвет индикатора                 | Описание                                                                                            |
|---------------------------------|-----------------------------------------------------------------------------------------------------|
| Зелёный                         | Связь с ведущим контроллером установлена.                                                           |
| Красный                         | Нет связи с устройствами CAN.                                                                       |
| Красный мигающий (по 2 вспышки) | Есть активность на шине CAN, но используется протокол несовместимый с CIO.                          |
| Красный мигающий                | Есть активность на шине CAN с использованием протокола CIO, но нет обращений к данному мо-<br>дулю. |

#### 4. Установка CAN ID модуля

Переключатель ID используется для задания адреса модуля CIO на шине CAN.

Для CIO 116 используются адреса в диапазоне от 1 до 15

Для CIO 208 используются адреса в диапазоне от 1 до 15

Для CIO 308 используются адреса в диапазоне от 1 до 15

#### 5. Подключение USB для обновления прошивки модуля

Обновление встроенного программного обеспечения модулей СІО производится через USB-порт.

# 2.4 Подключение модулей CIO

### 2.4.1 Описание клемм СЮ 308



| Клеммы | Название    | Описание                | Комментарий                      |                 |  |
|--------|-------------|-------------------------|----------------------------------|-----------------|--|
| 1      | +           | +12/24 V DC             | Питание (Supply)                 |                 |  |
| 2      | -           | 0 V DC                  |                                  |                 |  |
| 3      | Состояние   | Общий                   | Реле состояния (конфигурируемое) |                 |  |
| 4      | (Status)    | Нормально откры-<br>тый |                                  |                 |  |
| 5      | Н           | CAN-High                | Интерфейс CAN                    |                 |  |
| 6      | Общий (Com) | CAN-общий               |                                  |                 |  |
| 7      | L           | CAN-Low                 |                                  |                 |  |
|        |             |                         |                                  |                 |  |
| 8      | 18          | Вход А                  | Аналоговый вход                  |                 |  |
| 9      |             | Вход В                  | 8                                | Аналоговые вхо- |  |
| 10     |             | Вход С                  |                                  | дытруппат       |  |
| 11     | 111         | Вход А                  | Аналоговый вход                  |                 |  |
| 12     |             | Вход В                  | 11                               |                 |  |
| 13     |             | Вход С                  |                                  |                 |  |
| 14     | 114         | Вход А                  | Аналоговый вход                  |                 |  |
| 15     |             | Вход В                  | 14                               |                 |  |
| 16     |             | Вход С                  |                                  |                 |  |
| 17     | 117         | Вход А                  | Аналоговый вход                  |                 |  |
| 18     |             | Вход В                  | 17                               |                 |  |
| 19     |             | Вход С                  |                                  |                 |  |
|        | -           | -                       |                                  |                 |  |
| 20     | 120         | Вход А                  | Аналоговый вход                  | <b>A</b>        |  |
| 21     |             | Вход В                  | 20                               | Аналоговыи вхо- |  |
| 22     |             | Вход С                  |                                  |                 |  |
| 23     | 123         | Вход А                  | Аналоговый вход                  |                 |  |
| 24     |             | Вход В                  | 23                               |                 |  |
| 25     |             | Вход С                  |                                  |                 |  |
| 26     | 126         | Вход А                  | Аналоговый вход                  |                 |  |
| 27     |             | Вход В                  | 26                               |                 |  |
| 28     |             | Вход С                  |                                  |                 |  |
| 29     | 129         | Вход А                  | Аналоговый вход                  |                 |  |
| 30     | ]           | Вход В                  | 29                               |                 |  |
| 31     |             | Вход С                  |                                  |                 |  |

#### LED индикатор

Для индикации состояния каждого аналогового входа используется светодиодный индикатор.

| Тип входа         | Состояние индикатора | Описание                                                                                            |
|-------------------|----------------------|-----------------------------------------------------------------------------------------------------|
| Дискретный вход   | Вкл                  | На вход подан сигнал                                                                                |
|                   | Откл                 | Нет сигнала на входе                                                                                |
| 0(4) - 20 мА      | Вкл                  | В пределах диапазона 4-20 мА                                                                        |
|                   | Откл                 | Вне диапазона 4-20 мА (если<br>сигнал на входе >30 мА, инди-<br>катор мигает)                       |
| от 0 до 10 V      | Вкл                  | В пределах диапазона от 0.2 до 10 V                                                                 |
|                   | Откл                 | Вне диапазона от 0.2 до 10 В                                                                        |
| RMI (резистивный) | Вкл                  | В пределах диапазона от 10 до 2500 Ω                                                                |
|                   | Откл                 | Вне диапазона от 10 до 2500 Ω                                                                       |
| Pt100             | Вкл                  | В пределах входного диапазо-<br>на: низкий диапазон -50250 °C<br>или высокий диапазон<br>-200850 °C |
|                   | Откл                 | Вне диапазона: низкий диапа-<br>зон -50250 °С или высокий<br>диапазон -200850 °С                    |
| Pt1000            | Вкл                  | В пределах входного диапазо-<br>на: низкий диапазон -50250 °С<br>или высокий диапазон<br>-200850 °С |
|                   | Откл                 | Вне диапазона: низкий диапа-<br>зон -50250 °С или высокий<br>диапазон -200850 °С                    |
| Термопара         | Вкл                  | В пределах диапазона для за-<br>данного типа термопары                                              |
|                   | Откл                 | Вне диапазона для заданного типа термопары                                                          |

### 2.4.2 Подключение СЮ 308



При использовании датчиков Pt100/Pt1000 рекомендуется заземлить одну из клемм С (все клеммы С соединены внутри модуля). Это повысит качество измерений.

Для подключения датчиков рекомендуется использовать витую пару или/и экранированный кабель для достижения указанной точности и защиты от помех.

Ĭ

### 2.4.3 CAN шина

Модули CIO могут подключаться на одну шину CAN совместно с контроллером двигателя (ECU), как показано на рисунке ниже. Использование модулей CIO совместно с другими устройствами CAN, поддержка которых реализована в контроллерах AGC (J1939 и CANopen) стало возможным благодаря автоматической настройке скорости передачи данных в CIO.

Контроллер поддерживает подключение до трех модулей СІО каждого типа.

#### ) Контроллер не может одновременно работать с модулями CIO и Beckhoff.

Ниже приведен пример подключения коммуникационной шины CAN:



#### AGC 200

В контроллерах AGC200 для подключения CIO используется только CAN C.

| Клемма | Функция     | Описание   |
|--------|-------------|------------|
| 13     | CAN H       |            |
| 14     | Общий (Com) | САN порт С |
| 15     | CAN L       |            |

#### AGC-4/AGC PM

В контроллерах AGC-4 и AGC PM возможно использование интерфейсов CAN C, D, E или F при условии, что контроллер имеет одну из перечисленных опций: H5, H8 или H12.

| Клемма | Функция     | Описание   |
|--------|-------------|------------|
| 29     | CAN H       |            |
| 30     | Общий (Com) | САМ порт С |
| 31     | CAN L       |            |
| 32     | CAN H       |            |
| 33     | Общий (Com) | САN порт D |
| 34     | CAN L       |            |
|        |             |            |
| 130    | CAN H       |            |
| 131    | Общий (Com) | САМ порт Е |
| 132    | CAN L       |            |
|        |             |            |
| 133    | CAN H       |            |
| 134    | Общий (Com) | САN порт F |
| 135    | CAN L       |            |

# Опцию Н7 невозможно использовать для связи с модулями СЮ.

# 3. Связь CIO с контроллером

# 3.1 Настройка связи

Основные параметры связи модулей СІО доступны для конфигурации с дисплея контроллера. ПО USW предоставляет доступ ко всем настройкам СІО в специальном окне программы. Пример конфигурации СІО в USW показан ниже.



#### 1. Вызов окна конфигурации модулей СЮ

Первая вкладка окна - настройка параметров связи.

#### 2. Чтение конфигурации из устройства

#### 3. Запись конфигурации в устройство

#### 4. Настройка шины CAN

Настройка порта CAN и подключения CIO. Эти настройки также доступны в таблице параметров по соответствующим адресам.

#### 5. Автоматическое определение подключенных модулей

Если модули CIO уже подключены к контроллеру, и для них заданы корректные адреса, то ПО USW может автоматически определить количество и тип модулей CIO.

#### 6. Переключение между модулями

Выберите модуль из списка, чтобы получить доступ к его настройкам. Зеленый/серый индикатор показывает состояние подключения к модулю.

#### 7. Ручное задание количества подключенных модулей

#### 8. Список модулей

Адрес модуля может быть изменен в программе и должен соответствовать ID, заданному с помощью переключателя на модуле. В случае отсутствия связи с модулем CIO, с выдержкой времени появляется аварийный сигнал с заданным классом неисправности.



При первом открытии окна необходимо вычитать конфигурацию CIO из контроллера, при этом становятся активными кнопки меню.



При обрыве связи с модулями CIO 116 или CIO 308 контроллер продолжит работу с последними полученными от них значениями.

### 3.1.1 Пошаговое руководство по первоначальной настройке связи с модулями СЮ

Необходимо выполнить следующие шаги, чтобы установить связь контроллера с модулями СЮ. Процесс последующей конфигурации входов/выходов описан в инструкции ниже.

- Задать ID модуля (1-15), вращая переключатель в левом нижнем углу
- Выбрать САN для связи с CIO (параметр 7840).
   Если подключаются только модули CIO, выбрать в списке «Доп. модули DEIF», если совместно с CIO подключается контроллер двигателя - «H5 EIC».
- Включить связь с модулями СІО (параметр 7890).
- Открыть окно конфигурации CIO, нажав соответствующую иконку.
- Вычитать конфигурацию модулей СІО из контроллера.
- Запустить автоопределение модулей CIO и их ID.
- Автоопределение работает только, если СІО подключены к контроллеру. Возможно вручную добавить и настроить модули, изменив параметр «Количество модулей СІО xxx»
- Задать классы неисправности для обрыва связи, для всех модулей.
- Записать конфигурацию в контроллер.

#### 3.1.2 Пошаговое руководство по обновлению прошивки модулей CIO

Для обновления внутреннего ПО модулей СІО необходимо выполнить следующие действия.

- Подать питание на модуль
- Установить ID в значение 0.
- Подключить модуль CIO USB-кабелем к ПК
- Запустить ПО USW и подключиться к CIO.
- Подключаться необходимо с уровнем доступа «Оператор» (пароль 2000).
- Загрузить новую прошивку в устройство, нажав иконку 🍪
- После загрузки прошивки отключиться от устройства в ПО USW 🧖, извлечь USB-кабель и задать адрес ID CIO.

# 4. Конфигурация входов/выходов

# 4.1 CIO инфо



#### 1. Информация о модуле

Здесь отображается информация о выбранном модуле: его ID, версия программного обеспечения и аппаратной части. Эта информация важна при обращении в службу технической поддержки.

#### 2. Тест связи

При нажатии на кнопку Индикатор 2 состояния связи соответствующего модуля мигает зеленым.

#### 3. Состояние входов/выходов

В этой части отображаются измеренные значения (температуры, давления, напряжения и т.п.).

# 4.2 Реле состояния модуля

Модуль содержит встроенное реле, которое может использоваться как реле контроля состояния модуля или как конфигурируемое реле. Даже кратковременное отключение питания СЮ при отсутствии связи с ведущим контроллером приведёт к сбросу настройки реле Status, и оно будет работать как реле состояния до восстановления связи с ведущим контроллером, после чего настройка также восстановится. Конфигурация модулей СЮ сохраняется в ведущем контроллере (AGC). Это означает, что при установлении связи СЮ с контроллером модуль будет настроен автоматически.



#### 1. Тип реле

Выбор одного из двух вариантов: Реле состояния или конфигурируемое реле.

Реле состояния замкнуто, когда на модуль подано питание, модуль исправен и установлена связь с контроллером (см. описание индикаторов CIO). Настройки ниже применяются только, если реле используется в качестве конфигурируемого.

#### 2. Состояние реле при неисправности связи CAN

Возможны три варианта настроек: Отключено, Включено, Без изменения. В случае неисправности связи CAN реле реагирует в соответствии с выбранной настройкой. Если задано «Без изменения», то выход сохранит свое состояние до восстановления связи.

#### 3. Функция реле

Для конфигурируемого реле возможно задать различные функции:

#### Сигнализация НО

Реле нормально отключено.

При появлении сигнала неисправности реле включается и остаётся включённым до тех пор, пока активен и неподтверждён сигнал неисправности.

#### Управление

Реле срабатывает при достижении контролируемым параметром заданной уставки. Реле отключается с выдержкой времени после того, как исчезли условия его срабатывания. Выдержка времени задается в настройках реле.

При срабатывании реле, сконфигурированного как «Управление», не формируется сигнал неисправности в контроллере. Для всех других типов реле при их срабатывании формируется сигнал неисправности.



Для использования реле в М-Логике оно должно быть сконфигурировано как «Управление».

#### Звуковая сигнализация

Реле может быть назначена функция звуковой сигнализации.

В этом случае реле используется для включения внешнего устройства сигнализации. Реле звуковой сигнализации включается при появлении каждого нового сигнала неисправности. Если время включения звуковой сигнализации (параметр 6130) задано 0 секунд, то реле остается включенным до тех пор, пока неисправность не будет подтверждена (квитирована). Если параметр 6130 не равен 0, реле отключается по истечение заданного времени после появления сигнала неисправности.

#### Сирена

Работа данной функции похожа на работу реле звуковой сигнализации. Но в отличие от звуковой сигнализации, если реле «Сирена» сработало, и появляется новый сигнал неисправности, то реле кратковременно отключается и затем включается повторно. Если время включения (параметр 6130) задано 0 секунд, то реле остается включенным до тех пор, пока неисправности не подтверждены.

#### Сигнализация НЗ

Реле нормально включено.

При появлении сигнала неисправности реле отключается и остаётся в этом положении до тех пор, пока неисправность не подтверждена и не устранена.

#### 4. Выдержка времени

Данная настройка используется только для реле «Управление».

Параметр определяет, как долго реле остается включенным после исчезновения условий для его включения. Это - выдержка времени на отключение реле.

### 4.3 Аналоговые входы

### 4.3.1 Настройка аналоговых входов

Ниже приводится описание процедуры настройки для аналоговых входов. Информация в окне настройки зависит от типа входного сигнала (1 на рисунке).



#### 1. Тип входного сигнала

Определяет тип датчика подключенного ко входу. Возможны следующие варианты: Pt100, Pt1000, 0-10 В, RMI (резистивный), 0-20 мА, термопары или дискретный.

#### 2. Масштабирование

Используется для настройки масштаба и единиц измерения измеряемой величины. В качестве единиц измерения можно выбрать различные варианты, например°С, бар, кВт. Для масштабирования используются коэффициенты: 1/1, 1/10 и 1/100.

Например, если выбран коэффициент 1/100, то параметр отображается с 2 знаками после запятой: 327.67, или 32767, если задан коэффициент 1/1.

#### 3. Измерительная характеристика

Графическое представление измерительной характеристики, заданной в пункте 4.

#### 4. Конфигурируемая характеристика

В таблице задаётся отношение между входным и выходным значениями.

В примере на рисунке входному сигналу от 0 до 5 В соответствует значение параметра от 0.0 до 1.0 кВт. При этом, если входное напряжение поднимается выше 5 В, выходное значение останется 1.0 кВт.

#### 5. Контроль целостности цепей подключения датчика

Если входной сигнал находится за пределами заданного диапазона, то формируется сигнал неисправности подключения. В зависимости от характеристики датчика возможно обнаружение обрыва и/или короткого замыкания в цепях подключения. См. соответствующий раздел инструкции.

#### 6. Конфигурация сигналов неисправностей

Для каждого измерительного входа возможно задать два сигнала неисправности. Уставка задаётся в единицах измеряемой величины. В примере измеряемая величина имеет размерность кВт, поэтому уставка сигнала неисправности также задаётся в кВт (0.7 кВт и 0.8 кВт).

#### 4.3.2 Компенсация температуры холодного спая для термопар

В модуле CIO 308 реализована компенсация температуры холодного спая. Для этого может использоваться датчик температуры, встроенный непосредственно в CIO308, или внешний датчик температуры. При подключении термопары к CIO через соединительную коробку используется внешний датчик. В этом случае датчик (например, Pt100), измеряющий температуру холодного спая, устанавливается в соединительную коробку, к которой подключена ТП.







#### 1. Тип входного сигнала

Определяет тип термопары.

#### 2. Компенсация холодного спая

Задаёт способ компенсации. В списке можно задать отдельный вход для подключения внешнего датчика или выбрать использование встроенного в СІО 308 датчика.

#### 4.3.3 Контроль целостности цепей подключения датчиков

Модуль CIO 308 позволяет обнаруживать неисправности в цепях подключения датчиков. В зависимости от используемого типа датчиков обнаруживаются обрывы и/или короткие замыкания цепей. В качестве порога срабатывания неисправности используются значения, немного отклоняющиеся от нормального диапазона измеряемой величины.

| Тип сигнала                    | Нижняя граница                                                                                                    | Рабочий диапазон | Верхняя граница                                                                              |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------|--|
| 0-10 B                         | На 1 В ниже наимень-<br>шего значения рабоче-<br>го диапазона                                                     | Конфигурируемый  | На 1 V выше наиболь-<br>шего значения рабоче-<br>го диапазона                                |  |
| 0-20 мА                        | На 1 мА ниже наимень-<br>шего значения рабоче-<br>го диапазона                                                    | Конфигурируемый  | На 1 мА выше на-<br>ибольшего значения<br>рабочего диапазона                                 |  |
| Термопара (все типы)           | Контроль цепей не испол                                                                                           | тьзуется         |                                                                                              |  |
| Pt100 (низкий диапа-<br>зон)   | < 80.3 Ω                                                                                                          | 80.3-194.1 Ω     | > 194.1 Ω                                                                                    |  |
| Pt100 (высокий диапа-<br>зон)  | < 18.5 Ω                                                                                                          | 18.5-390.5 Ω     | > 390.5 Ω                                                                                    |  |
| Pt1000 (низкий диапа-<br>зон)  | < 803 Ω                                                                                                           | 803-1941 Ω       | > 1941 Ω                                                                                     |  |
| Pt1000 (высокий диапа-<br>зон) | < 185 Ω                                                                                                           | 185-3905 Ω       | > 3905 Ω                                                                                     |  |
| RMI, резистивный (все<br>типы) | 10% ниже наименьше-<br>го значения рабочего<br>диапазона                                                          | Конфигурируемый  | 10% выше наибольше-<br>го значения рабочего<br>диапазона                                     |  |
| Дискретный                     | Короткое замыкание не<br>может быть обнаруже-<br>но (при необходимости<br>детектировать КЗ ис-<br>пользуются RMI) | -                | Параллельно контак-<br>там датчика устанавли-<br>вается резистор 240 Ω<br>(см. рисунок ниже) |  |

#### Примеры:

#### 0-10 B

Для датчика с рабочим диапазоном 2-10 В, неисправность подключения формируется, если измеренное напряжение ниже 1 В или выше 11 В. Для диапазона 0-10 В нет контроля по нижней границе измерений.

#### 0-20 мА

Для диапазона 0-20 мА нет контроля по нижней границе измерений. Для сигнала 4-20 мА контроль осуществляется и по нижней границе и по верхней границе диапазона. В этом случае пороги для сигналов неисправности будут <3 мА и >21 мА.

#### RMI

Для резистивного датчика (RMI) с рабочей характеристикой 50-200 Ω сигналы неисправности формируются с использованием отклонения 15 Ω (10% от 150 Ω), в этом случае пороги срабатывания будут <35 Ω и >215 Ω.

#### Дискретный

Для контроля цепей подключения дискретных датчиков параллельно контактам этих датчиков устанавливаются резисторы 240 Ω. Резистор должен устанавливаться непосредственно на выходные контакты датчика. Дискретный вход замкнут при измерении 0 Ω, и разомкнут при измерении 240 Ω. При измерении более высокого сопротивления формируется сигнал неисправности подключения датчика. На рисунке ниже приведён пример подключения дискретного датчика с контролем подключения.



#### 4.3.4 Тексты на дисплее

Инструмент «Переводы» в USW позволяет изменять для каждого входа его название и тексты неисправностей. Для контроллеров AGC-4 и AGC PM также можно изменить единицы измерения. Параметром 6080 выбирается один из загруженных переводов.

#### AGC-4 и AGC PM

Если для сигнала планируется использовать пользовательские единицы измерения, то при его масштабировании необходимо выбрать один из коэффициентов без единиц измерения: «1/100», «1/10» или «1/1». В переводах для каждого сигнала доступны 3 текста без единиц измерения, которые используются для отображения параметра на дисплее в виде целого числа, числа с десятыми и с сотыми. В этих текстах после измеренного значения, представленного символами ######, можно вписать требуемые единицы измерения. Также можно изменить текст для сообщения «CIO – X.XX N.A.». Пример: «CIO-1.17 ###. ##» - строка в таком формате выводится на дисплей при отображении измеренного значения на входе 17, первого модуля CIO 308. При этом значение выводится с двумя знаками после запятой и без единиц измерения. С помощью «Переводов» текст может быть изменен на «Уровень топлива ###. ## %». В переводах рекомендуется сохранять нумерацию датчиков - это облегчает работу персонала в процессе эксплуатации.

|              | Ana 🎢  | i 🗸 X               |                     |                  |                  |
|--------------|--------|---------------------|---------------------|------------------|------------------|
|              |        | Master              |                     |                  |                  |
|              | Status | Master language 🛛 🗠 | / Language 1        | / Language 2     | / Language 3     |
| <u>e</u> h 🔺 |        | CIO-1.17 N.A.       | CIO-1.17 N.A.       | CIO-1.17 N.A.    | CIO-1.17 N.A.    |
| <u></u>      |        | CIO-1.17 ######     | CIO-1.17 ######     | CIO-1.17 ######  | CIO-1.17 ######  |
| <u> </u>     |        | CIO-1.17 #####.#    | CIO-1.17 #####.#    | CIO-1.17 #####.# | CIO-1.17 #####.# |
| Options      |        | CIO-1.17 ####.##    | Fuel Tank ####.## L | CIO-1.17 ####.## | CIO-1.17 ####.## |
| <b>⇒</b> ⊫]  |        | CIO-1.20 N.A.       | CIO-1.20 N.A.       | CIO-1.20 N.A.    | CIO-1.20 N.A.    |
|              |        | CIO-1.20 ######     | CIO-1.20 ######     | CIO-1.20 ######  | CIO-1.20 ######  |
| Logs         |        | CIO-1.20 #####.#    | CIO-1.20 #####.#    | CIO-1.20 #####.# | CIO-1.20 #####.# |
|              |        | CIO-1.20 ####.##    | CIO-1.20 ####.##    | CIO-1.20 ####.## | CIO-1.20 ####.## |
| °́€ ∕        |        | CIO-1.23 N.A.       | CIO-1.23 N.A.       | CIO-1.23 N.A.    | CIO-1.23 N.A.    |
| 5            |        | CIO-1.23 ######     | CIO-1.23 ######     | CIO-1.23 ######  | CIO-1.23 ######  |
| Translations |        | CIO-1.23 #####.#    | CIO-1.23 #####.#    | CIO-1.23 #####.# | CIO-1.23 #####.# |
| www.         |        | CIO-1.23 ####.##    | CIO-1.23 ####.##    | CIO-1.23 ####.## | CIO-1.23 ####.## |

#### AGC 200

С помощью «Переводов» возможно редактировать название каждого входа и тексты сигналов неисправности, с ним связанных. Также возможно изменить единицы измерения. Обратите внимание, что если «%» изменены на «м3», то «м3» будут использованы для всех текстов, где первоначально использовались «%».

|               | ĤAa                                | <b>#</b>   | 8                   |                     |              |              |              |
|---------------|------------------------------------|------------|---------------------|---------------------|--------------|--------------|--------------|
|               | Master<br>Status Master language △ |            | Master              |                     |              |              |              |
|               |                                    |            | Master language 🛛 🗠 | / Language 1        | / Language 2 | / Language 3 | / Language 4 |
| ▲             | $\bigcirc$                         | Translated | CIO 308 1.11        | Winding temp.       | CIO 308 1.11 | CIO 308 1.11 | CIO 308 1.11 |
|               | $ \mathbf{O} $                     | Translated | CIO 308 1.14        | Air inlet temp.     | CIO 308 1.14 | CIO 308 1.14 | CIO 308 1.14 |
|               | $\bigcirc$                         | Translated | CIO 308 1.17        | Fuel level          | CIO 308 1.17 | CIO 308 1.17 | CIO 308 1.17 |
| Logs          | $\bigcirc$                         | Translated | CIO 308 1.20        | Cooling water temp. | CIO 308 1.20 | CIO 308 1.20 | CIO 308 1.20 |
| Øé <b>∖</b> _ |                                    | Translated | CIO 308 1.23        | CIO 308 1.23        | CIO 308 1.23 | CIO 308 1.23 | CIO 308 1.23 |
|               |                                    | Translated | CIO 308 1.26        | CIO 308 1.26        | CIO 308 1.26 | CIO 308 1.26 | CIO 308 1.26 |
| Translations  |                                    | Translated | CIO 308 1.29        | CIO 308 1.29        | CIO 308 1.29 | CIO 308 1.29 | CIO 308 1.29 |
| ····•         |                                    | Translated | CIO 308 1.8         | CIO 308 1.8         | CIO 308 1.8  | CIO 308 1.8  | CIO 308 1.8  |
|               |                                    | Translated | CIO 308 2.11        | CIO 308 2.11        | CIO 308 2.11 | CIO 308 2.11 | CIO 308 2.11 |
| OR NOT        | $\bigcirc$                         | Translated | CIO 308 2.14        | CIO 308 2.14        | CIO 308 2.14 | CIO 308 2.14 | CIO 308 2.14 |
| M-Logic       | $\bigcirc$                         | Translated | CIO 308 2.17        | CIO 308 2.17        | CIO 308 2.17 | CIO 308 2.17 | CIO 308 2.17 |
|               | $\bigcirc$                         | Translated | CIO 308 2.20        | CIO 308 2.20        | CIO 308 2.20 | CIO 308 2.20 | CIO 308 2.20 |



Необходимо внимательно относится к изменению единиц измерения в текстах для контроллеров AGC200.